An infeasible-interior-point method for the \(P_\ast(k)\) -matrix LCP

Authors

  • Jun Ji Valdosta State University, USA
  • Florian A. Potra University of Iowa, USA
Abstract views: 175

Abstract

Not available.

Downloads

Download data is not yet available.

References

J. F. Bonnans and C. C. Gonzaga, Convergence of interior point algorithms for the monotone linear complementarity problerm, Mathematics of Operations Research 21, I (1996), pp.1-25, https://doi.org/10.1287/moor.21.1.1

R M. Freund, An Infeasible-start Algorithm for Linear Programming Wose Complexity Depends on the Distance from the Starting Point to the Optimal Solution, Working Paper 3559-93-MSA, Sloan School of Management, Massachusetts lnstitute of Technology, Cambridge, MA 02139, USA, 1993.

O. Güler, Generalized linear complementarity problems, Mathematics of Operations Research 20, 2 (1995), pp. 441-448, https://doi.org/10.1287/moor.20.2.441

A. J. Hoffman, On approximate solutions of systems of linear inequalities, Journal of Research of the National Bureau of Standards 49, (1952), pp. 263 -265, https://doi.org/10.6028/jres.049.027

J. Ji and F. A. Potra, On the Average Complexity of Finding an ε-Optimal Solution for Linear Programming, Reports on Computational Mathematics 25, Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA, (1992).

J. Ji, F. A. Potra and S. Huang, A predictor-corrector method for linear complementarity problems with polynomial complexity and superlinear convergence. Journal of Optimization Theory and Applications 85, (1995), pp. 187-199, https://doi.org/10.1007/bf02192304

M. Kojima, N. Megiddo, T. Noma and A. Yoshise, A Unified Approach to Interior point Algorithms for Linear Complementarity Problems, Lecture Notes in Comput. Sci., 538, Springer Verlag, New York, 1991, https://doi.org/10.1007/3-540-54509-3

M. Kojima, N. Megiddo, and S. Mizruro, A primal-dual infeasible-interior-point algorithm for Iinear programming, Mathematical programming, 61, (1993 ), 263-280, https://doi.org/10.1007/bf01582151

M. Kojima, S. Mizuno and M. J. Todd,Infeasible-interior-point primal-dual potential-reduction algorithms for linear programning, SIAM J. Oprimization 5, 1 (1995), pp. 52-67, https://doi.org/10.1137/0805003

J. Lustig, R. E. Marsten and D. F. Shanno, Computational experience with a globally convergent primal-dual predictor-corrector algorithm for Iinear programming,Mathematical Programming 66 (1994), pp. 123-135, https://doi.org/10.1007/bf01581140

J. Miao, A quadratically convergent O((1+k)√(nL) -iteration algorithm for the P_{∗}(k)-matrix Iinear complementarity problem, Mathematical programming 69, (1995), pp. 355-369, https://doi.org/10.1007/bf01585565

J. Miao, Two infeasible interior-point predictor-corrector algorithms for linear programming, SIAM J, Optimization 6, 3 (1996), pp. 587-599, https://doi.org/10.1137/s105262349325771x

S. Mizuno, Polynomiality of infeasible-interior-point algorithm for linear programming, Mathematical Programming 67, 1 (1994), pp. 109.

S. Mizuno, M. J. Todd and Y. Ye, On adaptive-stuep primal-dual interior-point algorithms for linear programming, Mathematics of Operations Research 128, 4 (1993), pp. 964-981.

R.D.C. Monteiro and S.J. Wright, Local convergence of interior-point algorithm for degenerate montone LCP, Computational Optimization and Applications, 3 (1994), pp. 131-155.

R.D.C. Monteiro and S.J. Wright, Superlinear primal-dual affine scaling algorithms for LCP, SIAM J. Optimization 6, 1 (1996), pp. 1-18.

A.M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces, Academic Press, New York, (1973).

F. A. Potra, An infeasible interior-point predictor-corrector algorithm for linear programming, SIAM J. Optimizaiton 6, 1 (1996), pp. 19-32.

F. A. Potra, A quadratically convergent predictor-corrector method for solving linear programs from infeasible starting points, Mathematical Programming 67, (1994), pp. 383-406.

F. A. Potra, An O(nl) infeasible interior-point algorithm for LCP with quadratic convergence, Annals of Operations Research 62, (1996), pp. 81-102.

R. H. Tütüncü and M. J.. Todd, Reducing Horizontal Linear Complementarity Problems, Technical Report 1023, School of Operations Research and Industrial Engineering, Cornell Univeristy, Ithaca, NY 14853-3801, USA (1992).

F. Wu, S. and Y. Ye, On Quadratic Convergence of the Homogeneous and Self-dual Linear Programming Algorithm, Working Paner, Department of Management Sciences, The University of Iowa, Iowa City, IA52242, USA (1993).

S. J. Wright, an infeasible-interior-point algorithm for linear complementarity problems, Mathematical Programming 67, 1 (1994), pp. 29-52.

S. Wright, A path-following infeasible-interior-point algorithm for linear compplementarity problems, Optimizaiton Methods and Software 2 (1993), pp. 79-196.

Y. Ye and K. Anstreicher, On quadratic and O(√(nL)) convergence of predictor-corrector algorithm for LCp, Mathematical Programming 62, 3 (1993), pp. 537-551.

Y. Ye, O. Güler, R. A. Tapia and Y. Zhang, A quadratically convergent of O(√(Ln))-iteration algorithm for linear programming, Mathematical Programming 59, 2 (1993), pp. 151-162.

Y. Ye, M. J. Todd and S. Mizuno, An O(√(Ln)) -iteration homogeneous and self-dual linear programming algorithm, Mathematics of Operations Research 19, 1 (1994), pp. 53-67.

Y. Zhang, On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem, SIAM J. Optimizaiton 4,1 (1994), pp. 208-227.

Y. Zhang and D. Zhang, Superlinear convergence of infeasible interior-point methods for linear programming, Mathematical Programming 66, 3 (1994), pp.361-378

Downloads

Published

1998-08-01

How to Cite

Ji, J., & Potra, F. A. (1998). An infeasible-interior-point method for the \(P_\ast(k)\) -matrix LCP. Rev. Anal. Numér. Théor. Approx., 27(2), 277–295. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no2-art9

Issue

Section

Articles