An improved boundary element method for the 2D lifting airfoil problem

Authors

  • Adrian Carabineanu University of Bucharest, Romania
Abstract views: 152

Abstract

Not available.

Downloads

Download data is not yet available.

References

C.A. J. Fletchter, Computational Techniques for Fluid Dynamics, I, II, Springer-Verlag (1991).

J. Katz, J.A. Plotkin, Low-Spped Aerodynamics, McGraw-Hill Inc. (1991), https://doi.org/10.1017/cbo9780511810329

C. Grillio, G. Iannelli, L. Tulumellor, An Alternative Boundary Element Approach to the 2d Potential Flow Problem around Airfoils, Eud. J. Mech., B/Fluids, 96 (1990), 527-543.

D.R. Poling, D.P. Telionis. The response of Airfoils to Periodic Disurbances: the Unsteady Kutta Condition, AIAA J., 24 (1986), 193-199, https://doi.org/10.2514/3.9244

L. Dragoş, A. Dinu, A Direct Boundary Integral method for the Two-Dimensional Lifting Flow (submitted to Archives of Mechanics), https://doi.org/10.1016/0045-7825(95)00850-4

T. Theodorsen, Theory of Wing Section of Arbitrary Shape, NACA Rep., 411 (1932), https://doi.org/10.1016/s0016-0032(32)90589-4

I. Naiman, Numerical Evaluation of the Integral Occuring in the Theodorsen Arbitrary Airfoil Potential Theory. NACA Arr. L4D27a (1944).

G. Verchota, Layer potentials and regularity for the Dirichlet's problem for Laplace's equation in Lipschitz domains, J. Func. nal., 59 (1984), 572-611, https://doi.org/10.1016/0022-1236(84)90066-1

C.A. Brebbia, J.C.F. Telles, L.C., Wrobel, Boundary Element Techniques, Springer-Verlag (1984).

Prössdorf, B. Silberman, Numerical analysis for Integral and Related Operator Equations, Akademie Verlag, Berlin (1991).

Downloads

Published

1999-02-01

How to Cite

Carabineanu, A. (1999). An improved boundary element method for the 2D lifting airfoil problem. Rev. Anal. Numér. Théor. Approx., 28(1), 3–14. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1999-vol28-no1-art1

Issue

Section

Articles