A note on Hölder's type inequalities and concave functions
Abstract
Not available.Downloads
References
S. Abramovich, A Note on Generaliyation Höleder's Inequalities via Convex and Concave Functions, Journal of Mathematical analysis and Applicaitons 152 (1990), 296-303,https://doi.org/10.1016/0022-247x(90)90104-n
D.C. Barnes, Supplements of Hölder's Inequality, Can. J. Math., XXXVI, 3(91984), pp. 421-435, https://doi.org/10.4153/cjm-1984-025-5
N.N. Chan and K.H. Li, Majorization for A-Optimal Designs. J. Math. Anal. Appl. 142 (1989), pp.101-107, https://doi.org/10.1016/0022-247x(89)90168-6
A.w. Marshal, I., Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, 1979.
Y.D. Zhuang, The Beckenbach Inequality and its Inverse, J. Math. Anal. Appl. 175 (1993), pp.118-125, https://doi.org/10.1006/jmaa.1993.1157
G.H. Toader, Integral and Discrete Inequalities, Revue d'Analyse Numérique et de Théorie de l'Approximation, 21, 2 (992), pp.83-88.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.