About some interpolation formulas over triangles

Authors

  • Dan Bărbosu North University of Baia Mare, Romania
  • Ioana Zelina North University Baia Mare, Romania
Abstract views: 192

Abstract

Not available.

Downloads

Download data is not yet available.

References

R.E. Barnhill, G. Birkhoff, W.J. Gordon, Smooth interpolation in triangles, J. Approx. Theory 8(1973), pp. 114-128, https://doi.org/10.1016/0021-9045(73)90020-8

D. Bărbosu, On some operators of blending type. Bul. Stii. Univ. Baia-Mare, vol. XII, no.2 (1996), pp. 169-174.

D. Bărbosu, I. Zelina, Interpolation procedures over triangles. Zbornik Vedeckych Prac. I. Sekcia Matematica a Jei Aplikacie v Trchnickych Vedach, 1997, pp.16-19.

K. Bohner, Gh. Coman, On some approximation schemes in triangles. Mathematica, 22(45) (1980), pp.231-235.

Gh. Coman, Analiză numerică, Ed. Libris, Cluj-Napoca, 1995 (in Romanian).

Gh. Coman, I. Gânscă, L. Ţâmbulea, New interpolation procedures in triangle, Studia Univ. Babeş-Bolyai, Mathematica, XXXVII.I (1992), pp.37-45.

Gh. Coman, I. Gânscă, L. Ţâmbulea, Some new root-surfaces generated by blending interpolation tehnique. Studia Univ. Babeş-Bolyai, Mathematica, XXXVI, I(1991), pp.119-130.

Gh. Coman, I. Gânscă, L. Ţâmbulea, Surfaces generated by blending interpolation, Studia Univ. Babeş-Bolyai, Mathematica, XXXVIII, 3(1993), pp.39-48.

W.J. Gordon, Distributive lattices and the approximation of multivariate functions, in "Approximation with special emphasis on spline functions" (Ed. by I.J. Schoenberg), Academic Press, New-Zork and London, 1969, pp.223-277.

Downloads

Published

1999-08-01

How to Cite

Bărbosu, D., & Zelina, I. (1999). About some interpolation formulas over triangles. Rev. Anal. Numér. Théor. Approx., 28(2), 117–123. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1999-vol28-no2-art2

Issue

Section

Articles