About some interpolation formulas over triangles
Abstract
Not available.Downloads
References
R.E. Barnhill, G. Birkhoff, W.J. Gordon, Smooth interpolation in triangles, J. Approx. Theory 8(1973), pp. 114-128, https://doi.org/10.1016/0021-9045(73)90020-8
D. Bărbosu, On some operators of blending type. Bul. Stii. Univ. Baia-Mare, vol. XII, no.2 (1996), pp. 169-174.
D. Bărbosu, I. Zelina, Interpolation procedures over triangles. Zbornik Vedeckych Prac. I. Sekcia Matematica a Jei Aplikacie v Trchnickych Vedach, 1997, pp.16-19.
K. Bohner, Gh. Coman, On some approximation schemes in triangles. Mathematica, 22(45) (1980), pp.231-235.
Gh. Coman, Analiză numerică, Ed. Libris, Cluj-Napoca, 1995 (in Romanian).
Gh. Coman, I. Gânscă, L. Ţâmbulea, New interpolation procedures in triangle, Studia Univ. Babeş-Bolyai, Mathematica, XXXVII.I (1992), pp.37-45.
Gh. Coman, I. Gânscă, L. Ţâmbulea, Some new root-surfaces generated by blending interpolation tehnique. Studia Univ. Babeş-Bolyai, Mathematica, XXXVI, I(1991), pp.119-130.
Gh. Coman, I. Gânscă, L. Ţâmbulea, Surfaces generated by blending interpolation, Studia Univ. Babeş-Bolyai, Mathematica, XXXVIII, 3(1993), pp.39-48.
W.J. Gordon, Distributive lattices and the approximation of multivariate functions, in "Approximation with special emphasis on spline functions" (Ed. by I.J. Schoenberg), Academic Press, New-Zork and London, 1969, pp.223-277.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.