Cubic trigonometric spline functions of interpolation and applications

Authors

  • Ion Ichim Bucharest, Romania
  • Grigore Albeanu University Bucharest, Romania
Abstract views: 240

Abstract

Not available.

Downloads

Download data is not yet available.

References

J.H. Ahlberg, E. N. Nilson and J. L. Walsh: The Theory of Splines and Their Applications, Academic Press, Inc., London, 1967.

F.-J .Delvos: Hermite Interpolation with Trigonometric Polynomials, BIT 33(1993), PP.113-123, https://doi.org/10.1007/bf01990347

l. lchim, Sur un problème de minimum, Rev. Roumaine Math. Pures Appl. 27 9 (1982), pp.969-979.

I. Ichim and G. Marinescu: Methods of Numerical Approximation, Ed. Acad., Bucharest, 1986 (in romanian).

I. Ichim, Proprietés de divisibilité dans l'anneau des polynômes trigonométriques. Bull. Math. Soc. Sci. Math. Roumanie, 36(84), 3-4(1992), pp.277-288.

I. Ichim, L'interpolation trigonométriques sur un corp comutatif de caractéristique O. Bull. Math. Soc. Sci. Math. Roumanie, 37(85), 1-2(1993), pp. 19-27.

I. Ichim and G. Albeanu, Sur la formule d'Hermite, Revue d'Analyse Numérique et de Théorie de l'Approximaiton, 23 2(1994), pp.153-165.

T. Lyche and R. Winther, a stable Recurrence Relation for Trigonometric B-splines, Journal of Approximation Theory, 25 (1979), pp.266-279, https://doi.org/10.1016/0021-9045(79)90017-0

I.J. Schoenberg, On trigonometric spline interpolation, Journal of Approximation Theory, 18 (1964), pp.278-303.

L. Schumaker, Spline Functions: Basic Theory, John Wiley & Sons, 1981.

Downloads

Published

1999-08-01

How to Cite

Ichim, I., & Albeanu, G. (1999). Cubic trigonometric spline functions of interpolation and applications. Rev. Anal. Numér. Théor. Approx., 28(2), 145–161. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1999-vol28-no2-art5

Issue

Section

Articles