Cubic trigonometric spline functions of interpolation and applications
Abstract
Not available.Downloads
References
J.H. Ahlberg, E. N. Nilson and J. L. Walsh: The Theory of Splines and Their Applications, Academic Press, Inc., London, 1967.
F.-J .Delvos: Hermite Interpolation with Trigonometric Polynomials, BIT 33(1993), PP.113-123, https://doi.org/10.1007/bf01990347
l. lchim, Sur un problème de minimum, Rev. Roumaine Math. Pures Appl. 27 9 (1982), pp.969-979.
I. Ichim and G. Marinescu: Methods of Numerical Approximation, Ed. Acad., Bucharest, 1986 (in romanian).
I. Ichim, Proprietés de divisibilité dans l'anneau des polynômes trigonométriques. Bull. Math. Soc. Sci. Math. Roumanie, 36(84), 3-4(1992), pp.277-288.
I. Ichim, L'interpolation trigonométriques sur un corp comutatif de caractéristique O. Bull. Math. Soc. Sci. Math. Roumanie, 37(85), 1-2(1993), pp. 19-27.
I. Ichim and G. Albeanu, Sur la formule d'Hermite, Revue d'Analyse Numérique et de Théorie de l'Approximaiton, 23 2(1994), pp.153-165.
T. Lyche and R. Winther, a stable Recurrence Relation for Trigonometric B-splines, Journal of Approximation Theory, 25 (1979), pp.266-279, https://doi.org/10.1016/0021-9045(79)90017-0
I.J. Schoenberg, On trigonometric spline interpolation, Journal of Approximation Theory, 18 (1964), pp.278-303.
L. Schumaker, Spline Functions: Basic Theory, John Wiley & Sons, 1981.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.