On a problem of B.A. Karpilovskaja

Authors

  • Costică Mustăţa Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy

Abstract

Not available.

Downloads

Download data is not yet available.

References

J.P. Aubin, A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory, Springer-Verlag, 1984.

O Aramă, D. Ripianu, On the polylocal problem for differential equations with constant coefficients (I), (II) (romanian), Studii şi cercetări ştiinţifice - Acad. R.P.R., Filiala Cluj VIII (1957).

O. Aramă, D. Ripianu, Quelques recherche actuelles concernant l'équation de Ch. de la Vallée-Poussin rélative au problem polylocal dans la théorie des équations différentielles, Mathematica (Cluj), 8 (31) I (1966), pp.19-28.

M.Biernacki, Sur un probléme d'interpolation relatif aux équaitons différentielle linéaires. Ann. de Sociéte Polonaise de Mathematique 20 (1947).

P. Blaga, G. Micula, Polynomial natural spline functions of even degree, Studia Univ."Babeş-Bolyai", Mathematica XXXVIII, 2 (1993), pp.3-40.

Ch. de la Vallee Poussin, Sur l'équation differentielle du second ordre. Détermination d'une integrale par deux valeurs assignées. Extension aux équations d'order n. Journ. Math. Pures et Appl. (9) 8 (1929).

B.E. Karpilovskaja, The convergence of a method of interpolation for differential equations (russian), U.M.N.t. VIII, 3 (1953), pp.111-118.

G. Micula, P. Blaga, M. Micula, On even degree polynomial spline functions with applications to numerical solution of differential equations with retarded argument. Technische Hochschule Darmstadt, Preprint No.1771 (1995), Fachbereich Mathematik.

R. Mustăţa, On p-derivative-interpolating spline functions, Revue d'Anal. Num. et de Th. de l'Approx. XXVI 1-2 (1997), pp.149-163,

C. Mustăţa, A. Mureşan, R. Mustaţă, The approximation by spline functions lf the solution of a singular perturbed bilocal problem, Revue d'anal. Num. et. de Th. de l'Approx. 27 (1998), 2, pp.297-308,

I. Păvăloiu, Introduction in the theory of approximation of the equations solutions, Ed. Dacia, Cluj-Napoca.

S.A. Pruess, Solving Linear Boundary Value Problems by Approximating the Coefficients. Math. of Computation 27 (123) (1973), pp. 551-561, https://doi.org/10.1090/s0025-5718-1973-0371100-1

D. Ripianu, Intervalles d'interpolation pour des équations différentielles linéaires. Mathematica (Cluj) 14 (37 2(1972), pp. 363-368.

D. Ripianu, Sur certaines classes d'équations différentielles interpolatoire dans un intervalle donnée, Revue d'anal. Numer. et de Theor. de l'Approx., 3 (1974), 2, pp. 215-223,

Downloads

Published

1999-08-01

How to Cite

Mustăţa, C. (1999). On a problem of B.A. Karpilovskaja. Rev. Anal. Numér. Théor. Approx., 28(2), 179–189. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1999-vol28-no2-art8

Issue

Section

Articles