A convergence analysis of an iterative algorithm of order \(1.839\ldots\) under weak assumptions
DOI:
https://doi.org/10.33993/jnaat322-741Keywords:
Banach space, majorizing sequence, Halley method, Euler-Chebyshev method, divided differences of order one and two, Fréchet-derivative, \(R\)-order of convergence, convergence radiusAbstract
We provide new and weaker sufficient local and semilocal conditions for the convergence of a certain iterative method of order 1.839\(\ldots\) to a solution of an equation in a Banach space. The new idea is to use center-Lipschitz/Lipschitz conditions instead of just Lipschitz conditions on the divided differences of the operator involved. This way we obtain finer error bounds and a better information on the location of the solution under weaker assumptions than before.Downloads
References
Argyros, I. K., Convergence results for the super Halley method using divided differences, Functiones et approximatio, commentarii mathematiki, XXIII, pp. 109-122, 1994.
Argyros, I. K., On the super Halley method using divided differences, Appl. Math. Letters, 10, no. 4, pp. 91-95, 1997, https://doi.org/10.1016/S0893-9659(97)00065-7. DOI: https://doi.org/10.1016/S0893-9659(97)00065-7
Argyros, I. K., On the monotone convergence of an Euler--Chebyshev-type method in partially ordered topological spaces, Rev. Anal. Numér. Théor. Approx., 27, no. 1, pp. 23-31, 1998, http://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art4
Argyros, I. K. and Szidarovszky, F., The Theory and Applications of Iteration Methods, C.R.C. Press, Boca Raton, Florida, 1993.
Brent, R. P., Algorithms for Minimization without Derivatives, Prentice Hall, Englewood Cliffs, NJ, 1973.
Ezquérro, J. A., Gutiérrez, J. M., Hernández, M. A. and Salanova, M. A., Solving nonlinear integral equations arising in radiative transfer, Numer. Funct. Anal. Optimiz., 20, nos. 7 and 8, pp. 661-673, 1999, https://doi.org/10.1080/01630569908816917. DOI: https://doi.org/10.1080/01630569908816917
Hernández, M. A., Rubio, M. J. and Ezquérro, J. A., Secant-like methods for solving nonlinear equations of the Hammerstein type, J. Comput. Appl. Math., 115, pp. 245-254, 2000, https://doi.org/10.1016/S0377-0427(99)00116-8. DOI: https://doi.org/10.1016/S0377-0427(99)00116-8
Kantorovich, L. V. and Akilov, G. P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1964.
King, R. F., An improved Pegasus method for root finding, BIT, 13, pp. 423-427, 1973, https://doi.org/10.1007/BF01933405. DOI: https://doi.org/10.1007/BF01933405
Mertvecova, M. A., An analog of the process of tangent hyperbolas for general functional equations, Dokl. Akad. Nauk SSSR, 88, pp. 611-614, 1953 (in Russian).
Necepurenko, M. T., On Chebyshev's method for functional equations, Usephi Mat. Nauk., 9, pp. 1673-170, 1954 (in Russian).
Potra, F. A., On an iterative algorithm of order 1.839… for solving nonlinear operator equations, Numer. Funct. Anal. Optimiz., 7, no. 1, pp. 75-106, 1984-85, https://doi.org/10.1080/01630568508816182. DOI: https://doi.org/10.1080/01630568508816182
Ul'm, S., Iteration methods with divided differences of the second order, Dokl. Akad. Nauk. SSSR, 158, pp. 55--58, 1964; Soviet Math. Dokl., 5, pp. 1187-1190 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.