On the convergence order of some Aitken-Steffensen type methods
DOI:
https://doi.org/10.33993/jnaat322-748Keywords:
Steffensen, Aitken and Aitken-Steffensen iterationsAbstract
In this note we make a comparative study of the convergence orders for the Steffensen, Aitken and Aitken-Steffensen methods. We provide some conditions ensuring their local convergence. We study the case when the auxiliary operators used have convergence orders \(r_{1},r_{2}\in \mathbb{N}\) respectively. We show that the Steffensen, Aitken and Aitken-Steffensen methods have the convergence orders \(r_{1}+1\), \(r_{1}+r_{2}\) and \(r_{1}r_{2}+r_{1}\) respectively.Downloads
References
Argyros, I. K., A new convergence theorem for the Steffensen method in Banach space and applications, Rev. Anal. Numér. Théor. Approx., 29, no. 2, pp. 119-127, 2000, http://ictp.acad.ro/jnaat/journal/article/view/2000-vol29-no2-art1
Argyros, I. K., An error analysis for the Steffensen method under generalized Zabrejko-Nguen-type assumptions, Rev. Anal. Numér. Théor. Approx., 25, nos. 1-2, pp. 11-22, 1996, http://ictp.acad.ro/jnaat/journal/article/view/1996-vol25-nos1-2-art2
Argyros, I. K., Polynomial Operator Equations in Abstract Spaces and Applications, CRC Press LLC, Boca Raton, Florida, 1998.
Argyros, I. K. and Szidarovszky, F., The theory and Applications of Iteration Methods, C.R.C. Press, Boca Raton, Florida, 1993.
Balazs, M. and Goldner, G., On the approximate solutions of equations in Hilbert space by a Steffensen-type method, Rev. Anal. Numér. Théor. Approx., 17, no. 1, pp. 19-23, 1998, http://ictp.acad.ro/jnaat/journal/article/view/1988-vol17-no1-art3
Cătinaş, E., On some Steffensen-type iterative methods for a class of nonlinear equations, Rev. Anal. Numér. Théor. Approx., 24, nos. 1-2, pp. 37-43, 1995, http://ictp.acad.ro/jnaat/journal/article/view/1995-vol24-nos1-2-art4
Cătinaş, E. and Păvăloiu, I., On some interpolatory iterative methods for the second degree polynomial operators (I), Rev. Anal. Numér. Théor. Approx., 27, no. 1, pp. 33-45, 1998, http://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art5
Cătinaş, E. and Păvăloiu, I., On some interpolatory iterative methods for the second degree polynomial operators (II), Rev. Anal. Numér. Théor. Approx., 28, no. 2, pp. 133-144, 1999, http://ictp.acad.ro/jnaat/journal/article/view/1999-vol28-no2-art4
Păvăloiu, I., Introduction to the Theory of Approximating the Solutions of Equations, Ed. Dacia, Cluj, 1986 (in Romanian).
Păvăloiu, I., Optimal efficiency index for iterative methods of interpolatory type, Computer Science Journal of Moldova, 5, 1 (13), pp. 20-43, 1997.
Păvăloiu, I., Approximation of the roots of equations by Aitken-Steffensen-type monotonic sequence, Calcolo, 32, nos. 1-2, pp. 69-82, 1995, https://doi.org/10.1007/BF02576543. DOI: https://doi.org/10.1007/BF02576543
Păvăloiu, I., Sur la méthode de Steffensen pour la résolution des équations opèrationnelles non linéaires, Rev. Roum. Math. Pure et Appl., XIII, no. 6, pp. 857-861, 1968.
Păvăloiu, I., Sur une généralisation de la methode de Steffensen, Rev. Anal. Numér. Théor. Approx., 21, no. 1, pp. 56-65, 1992, http://ictp.acad.ro/jnaat/journal/article/view/1992-vol21-no1-art8
Păvăloiu, I., Bilateral approximations for the solutions of scalar equations, Rev. Anal. Numér. Théor. Approx., 23, no. 1, pp. 95-100, 1994, http://ictp.acad.ro/jnaat/journal/article/view/1994-vol23-no1-art10
Păvăloiu, I., On the monotonicity of the sequence of approximations obtained by Steffensen method, Mathematica (Cluj), 35 (58), pp. 171-176, 1993.
Păvăloiu, I., On a Halley--Steffensen method for approximating the solutions of scalar equations, Rev. Anal. Numér. Théor. Approx., 30, no. 1, pp. 69-74, 2001.
Popoviciu, T., Sur la délimitation de l'erreur dans l'approximation des racines d'une équation par interpolation linéaire ou quadratique, Rev. Roumaine Math. Pures Appl., 13, pp. 75-78, 1968.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.