Self-similar sets in convex metric spaces

Authors

  • Ghiocel Moţ “Aurel Vlaicu” University, Ara, Romania

DOI:

https://doi.org/10.33993/jnaat332-776

Keywords:

self-similar set, generalized contraction, convex metric space
Abstract views: 174

Abstract

The purpose of this paper is to present some existence and uniqueness results for self-similar sets in convex complete metric spaces.

Downloads

Download data is not yet available.

References

Dugundji, J. and Granas, A., Fixed point theory, P. W. N. Warszawa, 1982.

Jachymski, J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 194, pp. 293-303, 1995, https://doi.org/10.1006/jmaa.1995.1299 DOI: https://doi.org/10.1006/jmaa.1995.1299

Meir, A. and Keeler, E., A theorem on contraction mappings, J. Math. Anal. Appl., 28, pp. 326-329, 1969, https://doi.org/10.1016/0022-247x(69)90031-6 DOI: https://doi.org/10.1016/0022-247X(69)90031-6

Matkowski, J. and Wegrzyk, R., On equivalence of some fixed point theorems for self mappings of metrically convex space, Boll. U. M. I., 15-A, pp. 359-369, 1978.

Moţ, G., Tipuri de convexitate în matematica modernă. Aplicaţii ale teoriei alurii, Editura Mirton, Timişoara, 1999 (in Romanian).

Nadler, S. B., Jr., Multivalued contraction mappings, Pacific J. Math., 30, pp.475-488, 1969, https://doi.org/10.2140/pjm.1969.30.475 DOI: https://doi.org/10.2140/pjm.1969.30.475

Petruşel, A., Single-valued and multi-valued Meir-Keeler type operators, Rev. Anal. Numér Théor. Approx., 30, pp. 75-80, 2001, http://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no1-art10

Petruşel, A., Dynamical systems, fixed points and fractals, Pure Math. Appl., 13, pp. 275-281, 2002.

Petruşel, A., Multi-funcţii şi aplicaţii, Cluj University Press, Cluj-Napoca, 2001 (in Romanian).

Petruşel, A., Operatorial inclusions, House of the Book of Science, Cluj-Napoca, 2002.

Rus, I. A., Generalized contractions, Cluj University Press, Cluj-Napoca, 2001.

Wegrzyk, R., Fixed point theorems for multivalued functions and their applications to functional equations, Dissertationes Math., 201, pp. 1-30, 1986.

Yamaguti, M., Hata, M. and Kigani, J., Mathematics of Fractals, Translations Math. Monograph, vol. 167, AMS Providence, Rhode Island 1997, https://doi.org/10.1090/mmono/167 DOI: https://doi.org/10.1090/mmono/167

Downloads

Published

2004-08-01

How to Cite

Moţ, G. (2004). Self-similar sets in convex metric spaces. Rev. Anal. Numér. Théor. Approx., 33(2), 197–201. https://doi.org/10.33993/jnaat332-776

Issue

Section

Articles