On a mean value theorem connected with Hermite-Hadamard's inequality
DOI:
https://doi.org/10.33993/jnaat332-780Keywords:
convex function, mean-value theorem, intermediate pointAbstract
In this paper we prove a mean-value theorem for integral calculus, then we demonstrate properties of the mean point. In the end we give an extension of Hermite-Hadamard's inequality.Downloads
References
Beckenbach, E.F. and Bellman, R., Inequalities, Springer-Verlag, Berlin-Götingen-Heidelberg, 1961. DOI: https://doi.org/10.1007/978-3-642-64971-4
Berinde, V., Despre proprietatea punctului intermediar în teoremele de medie pentru integrala Riemann, Lucrările Seminarului de Creativitate Matematică, Universitatea de Nord Baia Mare, 9, pp. 51-58, 2000 (in Romanian).
Florea, A. and Niculescu, C.P., Extensii ale inegalităţii Hermite-Hadamard, Lucrările Seminarului de Creativitate Matematică, Universitatea de Nord Baia Mare, 10, pp. 97-106, 2001 (in Romanian).
Hadamard, J., Étude sur les propriétés des functions entières et en particulier d'une function considérée par Riemann, J. Math. Pures Appl., 58, pp. 171-215, 1893.
Hardy, G. H., Littlewood, J. E. and Pólya, G., Inequalities, Cambridge University Press, 1934.
Jacobson, B., On the mean value theorem for integrals, Amer. Math. Monthly, 89, pp. 300--301, 1982, https://doi.org/10.1080/00029890.1982.11995437. DOI: https://doi.org/10.1080/00029890.1982.11995437
Mitrinovič, D. S., Analytic inequalities, Springer Berlin-Heidelberg-New York, 1970.
Mitrinovič, D. S. and Lackovič, I. B., Hermite and converxity, Aequationes Mathematicae, 28, pp. 229-232, 1985, https://doi.org/10.1007/BF02189414. DOI: https://doi.org/10.1007/BF02189414
Nicolescu, M., Mathematical Analysis, II, Editura Tehnică, Bucureşti, 1958 (in Romanian).
Niculescu, C. P., Asupra inegalităţilor de convexitate in absenţa derivabilităţii, Gazeta Matematică, CIII, no. 9, pp. 329-337, 1998 (in Romanian).
Pop, I., O caracterizare a funcţiilor convexe, Gazeta matematică, IC, no.7, pp. 313-314, 1994 (in Romanian).
Rockafellar, R.T., Convex analysis, Princeton University Press, 1970. DOI: https://doi.org/10.1515/9781400873173
Sireţchi, Gh., Calcul diferenţial şi integral, Editura Ştiinţifică şi Enciclopedică, Bucureşti, I, 1985 (in Romanian).
Udrişte, C., Tănăsescu, E., Minime şi maxime ale funcţiilor reale de variabile reale, Editura Tehnică, Bucureşti, 1980 (in Romanian).
Zhang Bao-lin, A note on the mean value theorem for integrals, Amer. Math. Monthly 104, pp. 561-562, 1997, https://doi.org/10.1080/00029890.1997.11990679. DOI: https://doi.org/10.1080/00029890.1997.11990679
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.