Remarks about a paper dealing with the equivalence of Mann and Ishikawa iterations
DOI:
https://doi.org/10.33993/jnaat332-784Keywords:
Mann iteration, Ishikawa iterationAbstract
We give an affirmative answer to the following question: are Mann and Ishikawa iterations equivalent under the assumptions that \(\lim_{n\rightarrow\infty }\alpha_{n}\neq0\;\) and \(\lim_{n\rightarrow\infty}\beta_{n}\neq0\)?Downloads
References
Ishikawa, S., Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44, pp. 147-150, 1974, https://doi.org/10.1090/S0002-9939-1974-0336469-5. DOI: https://doi.org/10.1090/S0002-9939-1974-0336469-5
Liu, Liwei, Approximation of fixed points of a strictly pseudocontractive mapping, Proc. Amer. Math. Soc., 125, pp. 1363-1366, 1997, https://www.jstor.org/stable/2162078. DOI: https://doi.org/10.1090/S0002-9939-97-03858-6
Mann, W.R., Mean value in iteration, Proc. Amer. Math. Soc., 4, pp. 506-510, 1953, https://doi.org/10.2307/2032162. DOI: https://doi.org/10.1090/S0002-9939-1953-0054846-3
Rhoades, B. E., Şoltuz, Ş. M., On the equivalence of Mann and Ishikawa iteration methods, Int. J. Math. Math. Sci., 2003, pp. 451-459, 2003. DOI: https://doi.org/10.1155/S0161171203110198
Sastry, K. P. R., Babu, G. V. R., Approximation of fixed points of strictly pseudocontractive mappings on arbitrary closed convex sets in a Banach space, Proc. Amer. Math. Soc., 128, pp. 2907-2909, 2000, https://doi.org/10.1090/S0002-9939-00-05362-4. DOI: https://doi.org/10.1090/S0002-9939-00-05362-4
Zeng, Luchuan, Ishikawa iterative procedure points of strictly pseudocontractive mappings, Appl. Math. J. Chinese Univ. Ser. B, 18, pp. 283-286, 2003. DOI: https://doi.org/10.1007/s11766-003-0052-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.