Some procedures for solving special max-min fractional rank-two reverse-convex programming problems

Authors

  • Doina Ionac University of Oradea, Romania
  • Ştefan Ţigan University of Medicine and Pharmacy “Iuliu-Hatieganu” Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat332-772

Keywords:

reverse-convex programming, max-min programming, bilinear fractional programs, linear fractional max-min programs
Abstract views: 208

Abstract

In this paper we suggest some procedures for solving two special classes of \(\max\)-\(\min\) fractional reverse-convex programs. We show that a special bilinear fractional max-min reverse-convex program can be solved by a linear reverse-convex programming problem. For a linear fractional max-min reverse-convex program, possessing two reverse-convex sets, we propose a parametrical method. The particularity of this procedure is the fact that the max-min optimal solution of the original problem is obtained by solving at each iteration two linear reverse-convex programs with a rank-two monotonicity property.

Downloads

Download data is not yet available.

References

Charnes, A., Cooper, W.W., Programming with linear fractional functionals, Naval Res. Logist. Quart., 9, 1-2, pp. 181-186, 1962, https://doi.org/10.1002/nav.3800090303 DOI: https://doi.org/10.1002/nav.3800090303

Crouzeix, J.P., Ferland, J.A. and Schaible, S., An algorithm for generalized fractional programs, J. Optim. Theory Appl., 47, 1, pp. 35-49, 1985, https://doi.org/10.1007/bf00941314 DOI: https://doi.org/10.1007/BF00941314

Golstein, E.G., Duality theory in mathematical programming and its applications, Nauka, Moskva, 1971 (in Russian).

Hillestad, R.J., Jacobsen S.E., Linear programs with an additional reverse-convex constraint, Applied Mathematics and Optimization, 6, pp. 257-269, 1980, https://doi.org/10.1007/BF01442898. DOI: https://doi.org/10.1007/BF01442898

Ionac, D., Aspecte privind analiza unor probleme de programare matematică, ed. Treira, Oradea, 2000 (in Romanian).

Ionac, D. and Tigan, S., Solving procedures for some max-min reverse-convex programs, Proc. of the "Tiberiu Popoviciu" Itinerant Seminar on functional Equations, Approximation and Convexity, Editura SRIMA, Cluj-Napoca, Romania, pp. 105-118, 2002.

Kuno, T., Globally determining a minimum area rectangle enclosing the projection of a higher-dimensional set, Operations Research Letters, 13, pp. 295-303, 1993, https://doi.org/10.1016/0167-6377(93)90052-i DOI: https://doi.org/10.1016/0167-6377(93)90052-I

Kuno, T. and Yamamoto Y., A finite algorithm for globally optimizing a class of rank-two reverse-convex programming, Journal of Global Optimization, 12, 3, pp. 247-265, 1998, https://doi.org/10.1023/a:1008216024699 DOI: https://doi.org/10.1023/A:1008216024699

Penot, J.-P., Duality for anticonvex programs, Journal of Global Optimization, 19, pp. 163-182, 2001, https://doi.org/10.1023/a:1008327614099 DOI: https://doi.org/10.1023/A:1008327614099

Pferschy, U. and Tuy, H., Linear programs with an additional rank-two reverse-convex constraint, Journal of Global Optimization, 4, pp. 441-454, 1994, https://doi.org/10.1007/bf01099268 DOI: https://doi.org/10.1007/BF01099268

Schaible, S., Nonlinear fractional programming, Oper. Res. Verfahren, 19, pp. 109-115, 1974.

Stancu-Minasian, I.M., Fractional Programming Theory, Methods and Applications, Kluwer Academic Publishers, Dordrecht, 1997, https://doi.org/10.1007/978-94-009-0035-6_2 DOI: https://doi.org/10.1007/978-94-009-0035-6_2

Tigan, S., Sur une methode de resolution d'un problème d'optimisation par segments, Rev. Anal. Numér. Théor. Approx., 4, no. 1, pp. 87-97, 1975, http://ictp.acad.ro/jnaat/journal/article/view/1975-vol4-no1-art11

Tigan, S., On the max-min nonlinear fractional problem, Rev. Anal. Numér. Théor. Approx., 9, no. 2, pp. 283-288, 1980, http://ictp.acad.ro/jnaat/journal/article/view/1980-vol9-no2-art14

Tigan, S., A parametrical method for max-min nonlinear fractional problems, Proc. of the Itinerant Seminar on functional Equations, Approximation and Convexity, "Babeş-Bolyai" University, Cluj-Napoca, pp. 175-184, 1983.

Tigan, S., Asupra unor probleme fracţionare de maximin, Studii şi Cercetări de Calcul Economic şi Calcul Economic, 1-2, pp. 53-57, 1992.

Tigan, S. and Stancu-Minasian, I.M., Methods for solving stochastic bilinear fractional max-min problems, Recherche Opérationnelle / Operations Research, 30, no. 1, pp. 81-98, 1996, https://doi.org/10.1051/ro/1996300100811 DOI: https://doi.org/10.1051/ro/1996300100811

Tuy, H., Convex programs with an additional reverse-convex constraint, Journal of Optimization Theory and Applications, 52, pp. 463-486, 1987, https://doi.org/10.1007/bf00938217 DOI: https://doi.org/10.1007/BF00938217

Downloads

Published

2004-08-01

How to Cite

Ionac, D., & Ţigan, Ştefan. (2004). Some procedures for solving special max-min fractional rank-two reverse-convex programming problems. Rev. Anal. Numér. Théor. Approx., 33(2), 167–174. https://doi.org/10.33993/jnaat332-772

Issue

Section

Articles