Finitely defined functionals and divided differences
DOI:
https://doi.org/10.33993/jnaat332-773Keywords:
divided difference, finitely defined functionalsAbstract
We give a necessary and sufficient condition for representing finitely defined functionals in terms of divided differences. As particular cases we obtain formulas of Tiberiu Popoviciu, Newton, etc.Downloads
References
DeVore, R. A. and Lorentz, G. G., Constructive Approximation, Springer Verlag, Berlin Heildelberg New York, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9
Kacsó, D. P., Approximation by means of piecewise linear functions, Results Math., 35 (1--2), pp. 89-102, 1999, https://doi.org/10.1007/BF03322024. DOI: https://doi.org/10.1007/BF03322024
Popoviciu, E., Mean value theorems and their connection to the interpolation theory, Editura Dacia, Cluj, 1972 (in Romanian).
Popoviciu, T., Introduction à la théorie des différences divisées, Bull. Math. de la Soc. Roumaine des Sci., 42 (1), pp. 65-78, 1940.
Popoviciu, T., Notes sur les fonctions convexes d'ordre supérieure (IX), Bull. Math. de la Soc. Roumaine des Sci., 43 (1-2), pp. 85-141, 1941.
Popoviciu, T., Curs de Analiză Matematică, Partea III-a, Continuitate, Babeş-Bolyai University Publishing House, Cluj-Napoca, 1974 (in Romanian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.