Finitely defined functionals and divided differences

Authors

  • Mircea Ivan Technical University of Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat332-773

Keywords:

divided difference, finitely defined functionals
Abstract views: 193

Abstract

We give a necessary and sufficient condition for representing finitely defined functionals in terms of divided differences. As particular cases we obtain formulas of Tiberiu Popoviciu, Newton, etc.

Downloads

Download data is not yet available.

References

DeVore, R. A. and Lorentz, G. G., Constructive Approximation, Springer Verlag, Berlin Heildelberg New York, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9

Kacsó, D. P., Approximation by means of piecewise linear functions, Results Math., 35 (1--2), pp. 89-102, 1999, https://doi.org/10.1007/BF03322024. DOI: https://doi.org/10.1007/BF03322024

Popoviciu, E., Mean value theorems and their connection to the interpolation theory, Editura Dacia, Cluj, 1972 (in Romanian).

Popoviciu, T., Introduction à la théorie des différences divisées, Bull. Math. de la Soc. Roumaine des Sci., 42 (1), pp. 65-78, 1940.

Popoviciu, T., Notes sur les fonctions convexes d'ordre supérieure (IX), Bull. Math. de la Soc. Roumaine des Sci., 43 (1-2), pp. 85-141, 1941.

Popoviciu, T., Curs de Analiză Matematică, Partea III-a, Continuitate, Babeş-Bolyai University Publishing House, Cluj-Napoca, 1974 (in Romanian).

Downloads

Published

2004-08-01

How to Cite

Ivan, M. (2004). Finitely defined functionals and divided differences. Rev. Anal. Numér. Théor. Approx., 33(2), 175–181. https://doi.org/10.33993/jnaat332-773

Issue

Section

Articles