Minisum location problems in directed networks

Authors

  • Daniela Marian Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat332-775

Keywords:

directed networks, circular distance, location problems, circular medians
Abstract views: 182

Abstract

We study some location problems in directed networks: we define circular medians and p-circular medians, \(p>1\). We present an algorithm for establishing circular medians. We adopt the definition of network as metric space in the sense of Dearing and Francis (1974).

Downloads

Download data is not yet available.

References

Dearing, P. M. and Francis, R. L., A minimax location problem on a network, Transportation Science, 8, pp. 333-343, 1974, https://doi.org/10.1287/trsc.8.4.333 DOI: https://doi.org/10.1287/trsc.8.4.333

Dearing, P. M., Francis, R. L. and Lowe T. J., Convex location problems on tree networks, Oper. Res., 24, pp. 628-634, 1976, https://doi.org/10.1287/opre.24.4.628 DOI: https://doi.org/10.1287/opre.24.4.628

Frank, H., A note on a theoretic game Hakimi's, Oper. Res., 15 no. 3, 567-570, 1967, https://doi.org/10.1287/opre.15.3.567. DOI: https://doi.org/10.1287/opre.15.3.567

Hakimi, S. L., Optimal location of switching centers and the absolute centers and medians of a graph, Oper. Res., 12, pp. 450-459, 1964, https://doi.org/10.1287/opre.12.3.450 DOI: https://doi.org/10.1287/opre.12.3.450

Hakimi, S. L., Optimal distribution of switching centers in a communication network and some related graph theoretic problems, Oper. Res., 13, no. 3, pp. 462-475, 1965, https://doi.org/10.1287/opre.13.3.462 DOI: https://doi.org/10.1287/opre.13.3.462

Hakimi, S. L. and Maheshwari, S. N., Optimum locations of centers in networks, Oper. Res., 20, pp. 967-973, 1972, https://doi.org/10.1287/opre.20.5.967 DOI: https://doi.org/10.1287/opre.20.5.967

Iacob, M. E., Convexity, Approximation and Optimization on Networks, PhD thesis, "Babeş-Bolyai" University, Cluj-Napoca, 1997 (in Romanian).

Kariv, O. and Hakimi, S. L., An algorithmic approach to network location problems, part I: the p-centers, SIAM J. Appl. Math., 37, pp. 539-560, 1979, https://doi.org/10.1137/0137041 DOI: https://doi.org/10.1137/0137041

Labbé, M., Essay in network location theory, Cahiers de Centre d'Etudes et de Recherche Oper., 27, nos. 1-2, pp. 7-130, 1985.

Labbé, M., Location on networks. Networks routing, Handbooks Oper. Res. Management Sci., North-Holland, Amsterdam, 8, pp. 551-624, 1995, https://doi.org/10.1016/s0927-0507(05)80111-2 DOI: https://doi.org/10.1016/S0927-0507(05)80111-2

Labbé, M., Facility location: models, methods and applications, Operations Research and Decision Aid Methodologies in Trafic and Transportation Management, M. Labbé et al. (eds.) Nato ASI Series F, Springer-Verlag, Heidelberg, 166, pp. 264-285, 1998, https://doi.org/10.1007/978-3-662-03514-6_12 DOI: https://doi.org/10.1007/978-3-662-03514-6_12

Labbé, M. and Louveaux, F. V., Locations Problems, Annotated Bibliography in Combinatorial Optimization. (M. Dell'Amico, F. Maffioli and S. Martello, eds.) Wiley, New York, pp. 261-281, 1997.

Marian, D., Networks. Applications in Scientific Research and Practice, Ed. Mediamira, Cluj-Napoca, 2002 (in Romanian).

Marian, D., Directions of mathematical analysis treated on graphs and networks, PhD Thesis, "Babeş-Bolyai" University, Cluj-Napoca, 2002 (in Romanian).

Marian, D., Circular distance in directed networks, Studia Univ. "Babeş-Bolyai", Informatica, XLII, no. 2, pp. 67-73, 1997.

Marian, D., Some Properties of Circular Distance in Directed Networks, Proceedings of International Conference on Advances in Ifrastructure for Electronic Business, Science, Education, Medicine and Mobile Technologies on the Internet, July 28^{th}-August 3^{rd}, 2003, L'Aquila, Italy.

Minieka, E., The centers and medians of a graph, Oper. Res., 25, pp. 641-650, 1977, https://doi.org/10.1287/opre.25.4.641 DOI: https://doi.org/10.1287/opre.25.4.641

Popoviciu, E., Mean Value Theorems in Mathematical Analysis and their Connection to the Interpolation Theory, Ed. Dacia, Cluj-Napaca, 1972 (in Romanian).

Popoviciu, T., Les Fonctions Convexes, Herman, Actualités Scientifiques et Industrielles, Paris, 1945.

Zelinka, B., Circular distance in directed graphs, Mathematica Bohemica, 122, no. 2, pp. 113-119, 1997. DOI: https://doi.org/10.21136/MB.1997.125917

Downloads

Published

2004-08-01

How to Cite

Marian, D. (2004). Minisum location problems in directed networks. Rev. Anal. Numér. Théor. Approx., 33(2), 189–196. https://doi.org/10.33993/jnaat332-775

Issue

Section

Articles