Minisum location problems in directed networks
DOI:
https://doi.org/10.33993/jnaat332-775Keywords:
directed networks, circular distance, location problems, circular mediansAbstract
We study some location problems in directed networks: we define circular medians and p-circular medians, \(p>1\). We present an algorithm for establishing circular medians. We adopt the definition of network as metric space in the sense of Dearing and Francis (1974).Downloads
References
Dearing, P. M. and Francis, R. L., A minimax location problem on a network, Transportation Science, 8, pp. 333-343, 1974, https://doi.org/10.1287/trsc.8.4.333 DOI: https://doi.org/10.1287/trsc.8.4.333
Dearing, P. M., Francis, R. L. and Lowe T. J., Convex location problems on tree networks, Oper. Res., 24, pp. 628-634, 1976, https://doi.org/10.1287/opre.24.4.628 DOI: https://doi.org/10.1287/opre.24.4.628
Frank, H., A note on a theoretic game Hakimi's, Oper. Res., 15 no. 3, 567-570, 1967, https://doi.org/10.1287/opre.15.3.567. DOI: https://doi.org/10.1287/opre.15.3.567
Hakimi, S. L., Optimal location of switching centers and the absolute centers and medians of a graph, Oper. Res., 12, pp. 450-459, 1964, https://doi.org/10.1287/opre.12.3.450 DOI: https://doi.org/10.1287/opre.12.3.450
Hakimi, S. L., Optimal distribution of switching centers in a communication network and some related graph theoretic problems, Oper. Res., 13, no. 3, pp. 462-475, 1965, https://doi.org/10.1287/opre.13.3.462 DOI: https://doi.org/10.1287/opre.13.3.462
Hakimi, S. L. and Maheshwari, S. N., Optimum locations of centers in networks, Oper. Res., 20, pp. 967-973, 1972, https://doi.org/10.1287/opre.20.5.967 DOI: https://doi.org/10.1287/opre.20.5.967
Iacob, M. E., Convexity, Approximation and Optimization on Networks, PhD thesis, "Babeş-Bolyai" University, Cluj-Napoca, 1997 (in Romanian).
Kariv, O. and Hakimi, S. L., An algorithmic approach to network location problems, part I: the p-centers, SIAM J. Appl. Math., 37, pp. 539-560, 1979, https://doi.org/10.1137/0137041 DOI: https://doi.org/10.1137/0137041
Labbé, M., Essay in network location theory, Cahiers de Centre d'Etudes et de Recherche Oper., 27, nos. 1-2, pp. 7-130, 1985.
Labbé, M., Location on networks. Networks routing, Handbooks Oper. Res. Management Sci., North-Holland, Amsterdam, 8, pp. 551-624, 1995, https://doi.org/10.1016/s0927-0507(05)80111-2 DOI: https://doi.org/10.1016/S0927-0507(05)80111-2
Labbé, M., Facility location: models, methods and applications, Operations Research and Decision Aid Methodologies in Trafic and Transportation Management, M. Labbé et al. (eds.) Nato ASI Series F, Springer-Verlag, Heidelberg, 166, pp. 264-285, 1998, https://doi.org/10.1007/978-3-662-03514-6_12 DOI: https://doi.org/10.1007/978-3-662-03514-6_12
Labbé, M. and Louveaux, F. V., Locations Problems, Annotated Bibliography in Combinatorial Optimization. (M. Dell'Amico, F. Maffioli and S. Martello, eds.) Wiley, New York, pp. 261-281, 1997.
Marian, D., Networks. Applications in Scientific Research and Practice, Ed. Mediamira, Cluj-Napoca, 2002 (in Romanian).
Marian, D., Directions of mathematical analysis treated on graphs and networks, PhD Thesis, "Babeş-Bolyai" University, Cluj-Napoca, 2002 (in Romanian).
Marian, D., Circular distance in directed networks, Studia Univ. "Babeş-Bolyai", Informatica, XLII, no. 2, pp. 67-73, 1997.
Marian, D., Some Properties of Circular Distance in Directed Networks, Proceedings of International Conference on Advances in Ifrastructure for Electronic Business, Science, Education, Medicine and Mobile Technologies on the Internet, July 28^{th}-August 3^{rd}, 2003, L'Aquila, Italy.
Minieka, E., The centers and medians of a graph, Oper. Res., 25, pp. 641-650, 1977, https://doi.org/10.1287/opre.25.4.641 DOI: https://doi.org/10.1287/opre.25.4.641
Popoviciu, E., Mean Value Theorems in Mathematical Analysis and their Connection to the Interpolation Theory, Ed. Dacia, Cluj-Napaca, 1972 (in Romanian).
Popoviciu, T., Les Fonctions Convexes, Herman, Actualités Scientifiques et Industrielles, Paris, 1945.
Zelinka, B., Circular distance in directed graphs, Mathematica Bohemica, 122, no. 2, pp. 113-119, 1997. DOI: https://doi.org/10.21136/MB.1997.125917
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.