Return to Article Details The generalization of Voronovskaja's theorem for a class of linear and positive operators

THE GENERALIZATION OF VORONOVSKAJA'S THEOREM FOR A CLASS OF LINEAR AND POSITIVE OPERATORS

OVIDIU T. POP*

Abstract

In this paper we generalize Voronovskaja's theorem for a class of linear and positive operators, and then, through particular cases, we obtain statements verified by the Bernstein, Schurer, Stancu, Kantorovich and Durrmeyer operators.

MSC 2000. 41A10, 41A36.
Keywords. Bernstein operators, Bernstein-Schurer operators, BernsteinStancu operators, Kantorovich operators, Durrmeyer operators, Voronovskaja's theorem.

1. INTRODUCTION

In this section, we recall some notions and results which we will use in this article.
Let m m mmm be a nonzero natural number and B m : C ( [ 0 , 1 ] ) C ( [ 0 , 1 ] ) B m : C ( [ 0 , 1 ] ) C ( [ 0 , 1 ] ) B_(m):C([0,1])rarr C([0,1])B_{m}: C([0,1]) \rightarrow C([0,1])Bm:C([0,1])C([0,1]) the Bernstein operators, defined for any function f C ( [ 0 , 1 ] ) f C ( [ 0 , 1 ] ) f in C([0,1])f \in C([0,1])fC([0,1]) by
(1.1) ( B m f ) ( x ) = k = 0 n p m , k ( x ) f ( k m ) , (1.1) B m f ( x ) = k = 0 n p m , k ( x ) f k m , {:(1.1)(B_(m)f)(x)=sum_(k=0)^(n)p_(m,k)(x)f((k)/(m))",":}\begin{equation*} \left(B_{m} f\right)(x)=\sum_{k=0}^{n} p_{m, k}(x) f\left(\frac{k}{m}\right), \tag{1.1} \end{equation*}(1.1)(Bmf)(x)=k=0npm,k(x)f(km),
where p m , k ( x ) p m , k ( x ) p_(m,k)(x)p_{m, k}(x)pm,k(x) are the fundamental polynomials of Bernstein, defined as follows
(1.2) p m , k ( x ) = ( m k ) x k ( 1 x ) m k , (1.2) p m , k ( x ) = ( m k ) x k ( 1 x ) m k , {:(1.2)p_(m,k)(x)=((m)/(k))x^(k)(1-x)^(m-k)",":}\begin{equation*} p_{m, k}(x)=\binom{m}{k} x^{k}(1-x)^{m-k}, \tag{1.2} \end{equation*}(1.2)pm,k(x)=(mk)xk(1x)mk,
for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] and any k { 0 , 1 , , m } k { 0 , 1 , , m } k in{0,1,dots,m}k \in\{0,1, \ldots, m\}k{0,1,,m}.
In 1932, E. Voronovskaja, proved the result contained in the following theorem.
Theorem 1.1. ([13]) Let f C ( [ 0 , 1 ] ) f C ( [ 0 , 1 ] ) f in C([0,1])f \in C([0,1])fC([0,1]) be a two times derivable function at the point x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1]. Then the equality
(1.3) lim m m [ ( B m f ) ( x ) f ( x ) ] = x ( 1 x ) 2 f ( x ) (1.3) lim m m B m f ( x ) f ( x ) = x ( 1 x ) 2 f ( x ) {:(1.3)lim_(m rarr oo)m[(B_(m)f)(x)-f(x)]=(x(1-x))/(2)f^('')(x):}\begin{equation*} \lim _{m \rightarrow \infty} m\left[\left(B_{m} f\right)(x)-f(x)\right]=\frac{x(1-x)}{2} f^{\prime \prime}(x) \tag{1.3} \end{equation*}(1.3)limmm[(Bmf)(x)f(x)]=x(1x)2f(x)
holds.
For the natural numbers m m mmm and p , m p , m p,mp, mp,m nonzero, F. Schurer (see [9]) introduced and studied in 1962, the operators B ~ m , p : C ( [ 0 , 1 + p ] ) C ( [ 0 , 1 ] ) B ~ m , p : C ( [ 0 , 1 + p ] ) C ( [ 0 , 1 ] ) widetilde(B)_(m,p):C([0,1+p])rarr C([0,1])\widetilde{B}_{m, p}: C([0,1+p]) \rightarrow C([0,1])B~m,p:C([0,1+p])C([0,1]), named Bernstein-Schurer operators, defined for any function f C ( [ 0 , 1 + p ] ) f C ( [ 0 , 1 + p ] ) f in C([0,1+p])f \in C([0,1+p])fC([0,1+p]) by
(1.4) ( B ~ m , p f ) ( x ) = k = 0 m + p p ~ m , k ( x ) f ( k m ) (1.4) B ~ m , p f ( x ) = k = 0 m + p p ~ m , k ( x ) f k m {:(1.4)( widetilde(B)_(m,p)f)(x)=sum_(k=0)^(m+p) widetilde(p)_(m,k)(x)f((k)/(m)):}\begin{equation*} \left(\widetilde{B}_{m, p} f\right)(x)=\sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) f\left(\frac{k}{m}\right) \tag{1.4} \end{equation*}(1.4)(B~m,pf)(x)=k=0m+pp~m,k(x)f(km)
where p ~ m , k ( x ) p ~ m , k ( x ) widetilde(p)_(m,k)(x)\widetilde{p}_{m, k}(x)p~m,k(x) denotes the fundamental Bernstein-Schurer polynomials, defined as follows
(1.5) p ~ m , k ( x ) = ( m + p k ) x k ( 1 x ) m + p k = p m + p , k ( x ) (1.5) p ~ m , k ( x ) = ( m + p k ) x k ( 1 x ) m + p k = p m + p , k ( x ) {:(1.5) tilde(p)_(m,k)(x)=((m+p)/(k))x^(k)(1-x)^(m+p-k)=p_(m+p,k)(x):}\begin{equation*} \tilde{p}_{m, k}(x)=\binom{m+p}{k} x^{k}(1-x)^{m+p-k}=p_{m+p, k}(x) \tag{1.5} \end{equation*}(1.5)p~m,k(x)=(m+pk)xk(1x)m+pk=pm+p,k(x)
for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] and any k { 0 , 1 , , m + p } k { 0 , 1 , , m + p } k in{0,1,dots,m+p}k \in\{0,1, \ldots, m+p\}k{0,1,,m+p}.
In 2002, D. Bărbosu proved the result contained in the following theorem.
Theorem 1.2. ([2]) Let f C ( [ 0 , 1 + p ] ) f C ( [ 0 , 1 + p ] ) f in C([0,1+p])f \in C([0,1+p])fC([0,1+p]) be a two times derivable function at the point x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1]. Then the equality
(1.6) lim m ( m + p ) [ ( B ~ m , p f ) ( x ) f ( x ) ] = p x f ( x ) + x ( 1 x ) 2 f ( x ) (1.6) lim m ( m + p ) B ~ m , p f ( x ) f ( x ) = p x f ( x ) + x ( 1 x ) 2 f ( x ) {:(1.6)lim_(m rarr oo)(m+p)[( widetilde(B)_(m,p)f)(x)-f(x)]=pxf^(')(x)+(x(1-x))/(2)f^('')(x):}\begin{equation*} \lim _{m \rightarrow \infty}(m+p)\left[\left(\widetilde{B}_{m, p} f\right)(x)-f(x)\right]=p x f^{\prime}(x)+\frac{x(1-x)}{2} f^{\prime \prime}(x) \tag{1.6} \end{equation*}(1.6)limm(m+p)[(B~m,pf)(x)f(x)]=pxf(x)+x(1x)2f(x)
holds.
Let m m mmm be a nonzero natural number and the operators M n : L 1 ( [ 0 , 1 ] ) C ( [ 0 , 1 ] ) M n : L 1 ( [ 0 , 1 ] ) C ( [ 0 , 1 ] ) M_(n):L_(1)([0,1])rarr C([0,1])M_{n}: L_{1}([0,1]) \rightarrow C([0,1])Mn:L1([0,1])C([0,1]) are defined for any function f L 1 ( [ 0 , 1 ] ) f L 1 ( [ 0 , 1 ] ) f inL_(1)([0,1])f \in L_{1}([0,1])fL1([0,1]) by
(1.7) ( M m f ) ( x ) = ( m + 1 ) k = 0 m p m , k ( x ) 0 1 p m , k ( t ) f ( t ) d t (1.7) M m f ( x ) = ( m + 1 ) k = 0 m p m , k ( x ) 0 1 p m , k ( t ) f ( t ) d t {:(1.7)(M_(m)f)(x)=(m+1)sum_(k=0)^(m)p_(m,k)(x)int_(0)^(1)p_(m,k)(t)f(t)dt:}\begin{equation*} \left(M_{m} f\right)(x)=(m+1) \sum_{k=0}^{m} p_{m, k}(x) \int_{0}^{1} p_{m, k}(t) f(t) \mathrm{d} t \tag{1.7} \end{equation*}(1.7)(Mmf)(x)=(m+1)k=0mpm,k(x)01pm,k(t)f(t)dt
for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1].
These operators were introduced in 1967 by J.L. Durrmeyer in [5] and were studied in 1981 by M.M. Derriennic in [4], where the following theorem can be found.
Theorem 1.3. Let f L 1 ( [ 0 , 1 ] ) f L 1 ( [ 0 , 1 ] ) f inL_(1)([0,1])f \in L_{1}([0,1])fL1([0,1]), bounded on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1]. If f f fff is a two times derivable function at the point x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1], then
(1.8) lim m m [ ( M m f ) ( x ) f ( x ) ] = [ x ( 1 x ) f ( x ) ] (1.8) lim m m M m f ( x ) f ( x ) = x ( 1 x ) f ( x ) {:(1.8)lim_(m rarr oo)m[(M_(m)f)(x)-f(x)]=[x(1-x)f^(')(x)]^('):}\begin{equation*} \lim _{m \rightarrow \infty} m\left[\left(M_{m} f\right)(x)-f(x)\right]=\left[x(1-x) f^{\prime}(x)\right]^{\prime} \tag{1.8} \end{equation*}(1.8)limmm[(Mmf)(x)f(x)]=[x(1x)f(x)]
If f f fff is a two times derivable function on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1] and the function f f f^('')f^{\prime \prime}f is continuous on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1], then the convergence from ( 1.8 ) is uniform on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1].
For m m mmm be a nonzero natural number, let the operators K m : L 1 ( [ 0 , 1 ] ) C ( [ 0 , 1 ] ) K m : L 1 ( [ 0 , 1 ] ) C ( [ 0 , 1 ] ) K_(m):L_(1)([0,1])rarr C([0,1])K_{m}: L_{1}([0,1]) \rightarrow C([0,1])Km:L1([0,1])C([0,1]) defined for any function f L 1 ( [ 0 , 1 ] ) f L 1 ( [ 0 , 1 ] ) f inL_(1)([0,1])f \in L_{1}([0,1])fL1([0,1]) by
(1.9) ( K m f ) ( x ) = ( m + 1 ) k = 0 m p m , k ( x ) k m + 1 k + 1 m + 1 f ( t ) d t (1.9) K m f ( x ) = ( m + 1 ) k = 0 m p m , k ( x ) k m + 1 k + 1 m + 1 f ( t ) d t {:(1.9)(K_(m)f)(x)=(m+1)sum_(k=0)^(m)p_(m,k)(x)int_((k)/(m+1))^((k+1)/(m+1))f(t)dt:}\begin{equation*} \left(K_{m} f\right)(x)=(m+1) \sum_{k=0}^{m} p_{m, k}(x) \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t) \mathrm{d} t \tag{1.9} \end{equation*}(1.9)(Kmf)(x)=(m+1)k=0mpm,k(x)km+1k+1m+1f(t)dt
for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1].
The operators K m K m K_(m)K_{m}Km, where m m mmm is a nonzero natural number, are named Kantorovich operators, introduced and studied in 1930 by L.V. Kantorovich (see [10]).
For 0 α β 0 α β 0 <= alpha <= beta0 \leq \alpha \leq \beta0αβ and m m mmm a nonzero natural number, define P m ( α , β ) : C ( [ 0 , 1 ] ) C ( [ 0 , 1 ] ) P m ( α , β ) : C ( [ 0 , 1 ] ) C ( [ 0 , 1 ] ) P_(m)^((alpha,beta)):C([0,1])rarr C([0,1])P_{m}^{(\alpha, \beta)}: C([0,1]) \rightarrow C([0,1])Pm(α,β):C([0,1])C([0,1]) for any function f C ( [ 0 , 1 ] ) f C ( [ 0 , 1 ] ) f in C([0,1])f \in C([0,1])fC([0,1]) by
(1.10) ( P m ( α , β ) f ) ( x ) = k = 0 m p m , k ( x ) f ( k + α m + β ) (1.10) P m ( α , β ) f ( x ) = k = 0 m p m , k ( x ) f k + α m + β {:(1.10)(P_(m)^((alpha,beta))f)(x)=sum_(k=0)^(m)p_(m,k)(x)f((k+alpha)/(m+beta)):}\begin{equation*} \left(P_{m}^{(\alpha, \beta)} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{k+\alpha}{m+\beta}\right) \tag{1.10} \end{equation*}(1.10)(Pm(α,β)f)(x)=k=0mpm,k(x)f(k+αm+β)
for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1].
The operators P m ( α , β ) P m ( α , β ) P_(m)^((alpha,beta))P_{m}^{(\alpha, \beta)}Pm(α,β), where m m mmm is a nonzero natural number, are named Bernstein-Stancu operators, introduced and studied in 1969 by D.D. Stancu in the paper [12].
In [12] is the result contained in the following theorem.
Theorem 1.4. Let f C ( [ 0 , 1 ] ) f C ( [ 0 , 1 ] ) f in C([0,1])f \in C([0,1])fC([0,1]) be a two times derivable function at the point x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1]. Then the equality
(1.11) lim m ( m + β ) [ ( P m ( α , β ) f ) ( x ) f ( x ) ] = ( α β x ) f ( x ) + x ( 1 x ) 2 f ( x ) (1.11) lim m ( m + β ) P m ( α , β ) f ( x ) f ( x ) = ( α β x ) f ( x ) + x ( 1 x ) 2 f ( x ) {:(1.11)lim_(m rarr oo)(m+beta)[(P_(m)^((alpha,beta))f)(x)-f(x)]=(alpha-beta x)f^(')(x)+(x(1-x))/(2)f^('')(x):}\begin{equation*} \lim _{m \rightarrow \infty}(m+\beta)\left[\left(P_{m}^{(\alpha, \beta)} f\right)(x)-f(x)\right]=(\alpha-\beta x) f^{\prime}(x)+\frac{x(1-x)}{2} f^{\prime \prime}(x) \tag{1.11} \end{equation*}(1.11)limm(m+β)[(Pm(α,β)f)(x)f(x)]=(αβx)f(x)+x(1x)2f(x)
holds.
We consider I R , I I R , I I subR,II \subset \mathbb{R}, IIR,I an interval and we shall use the function sets: E ( I ) E ( I ) E(I)E(I)E(I), F ( I ) F ( I ) F(I)F(I)F(I) which are subsets of the set of real functions defined on I , B ( I ) = { f f : I R , f I , B ( I ) = { f f : I R , f I,B(I)={f∣f:I rarrR,fI, B(I)=\{f \mid f: I \rightarrow \mathbb{R}, fI,B(I)={ff:IR,f bounded on I } , C ( I ) = { f f : I R , f I } , C ( I ) = { f f : I R , f I},C(I)={f∣f:I rarrR,fI\}, C(I)=\{f \mid f: I \rightarrow \mathbb{R}, fI},C(I)={ff:IR,f continuous on I } I } I}I\}I} and C B ( I ) = B ( I ) C ( I ) C B ( I ) = B ( I ) C ( I ) C_(B)(I)=B(I)nn C(I)C_{B}(I)=B(I) \cap C(I)CB(I)=B(I)C(I). For any x I x I x in Ix \in IxI, let the functions φ x , ψ x : I R φ x , ψ x : I R varphi_(x),psi_(x):I rarrR\varphi_{x}, \psi_{x}: I \rightarrow \mathbb{R}φx,ψx:IR, φ x ( t ) = | t x | , ψ x ( t ) = t x φ x ( t ) = | t x | , ψ x ( t ) = t x varphi_(x)(t)=|t-x|,psi_(x)(t)=t-x\varphi_{x}(t)=|t-x|, \psi_{x}(t)=t-xφx(t)=|tx|,ψx(t)=tx, for any t I t I t in It \in ItI.
Definition 1.5. If I R I R I subRI \subset \mathbb{R}IR is a given interval and f B ( I ) f B ( I ) f in B(I)f \in B(I)fB(I), then the first order modulus of smoothness of f f fff is the function ω 1 : [ 0 , ) R ω 1 : [ 0 , ) R omega_(1):[0,oo)rarrR\omega_{1}:[0, \infty) \rightarrow \mathbb{R}ω1:[0,)R defined for any δ 0 δ 0 delta >= 0\delta \geq 0δ0 by
(1.12) ω 1 ( f ; δ ) = sup { | f ( x ) f ( x ) | : x , x I , | x x | δ } (1.12) ω 1 ( f ; δ ) = sup f x f x : x , x I , x x δ {:(1.12)omega_(1)(f;delta)=s u p{|f(x^('))-f(x^(''))|:x^('),x^(')in I,|x^(')-x^('')| <= delta}:}\begin{equation*} \omega_{1}(f ; \delta)=\sup \left\{\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|: x^{\prime}, x^{\prime} \in I,\left|x^{\prime}-x^{\prime \prime}\right| \leq \delta\right\} \tag{1.12} \end{equation*}(1.12)ω1(f;δ)=sup{|f(x)f(x)|:x,xI,|xx|δ}
In the following, we take into account the properties of the first order modulus of smoothness and the properties of the linear positive functional.
Lemma 1.6. If f C B ( I ) f C B ( I ) f inC_(B)(I)f \in C_{B}(I)fCB(I), then ω 1 ( f ; ) ω 1 ( f ; ) omega_(1)(f;*)\omega_{1}(f ; \cdot)ω1(f;) have the following properties
а) ω 1 ( f ; 0 ) = 0 ω 1 ( f ; 0 ) = 0 omega_(1)(f;0)=0\omega_{1}(f ; 0)=0ω1(f;0)=0;
b) ω 1 ( f ; ) ω 1 ( f ; ) omega_(1)(f;*)\omega_{1}(f ; \cdot)ω1(f;) is increasing function;
c) ω 1 ( f ; ) ω 1 ( f ; ) omega_(1)(f;*)\omega_{1}(f ; \cdot)ω1(f;) is uniform continuous function;
for any δ > 0 δ > 0 delta > 0\delta>0δ>0, for any x , t I x , t I x,t in Ix, t \in Ix,tI, we have
d) ω 1 ( f ; φ x ( t ) ) [ 1 + δ 1 φ x ( t ) ] ω 1 ( f ; δ ) ω 1 f ; φ x ( t ) 1 + δ 1 φ x ( t ) ω 1 ( f ; δ ) omega_(1)(f;varphi_(x)(t)) <= [1+delta^(-1)varphi_(x)(t)]omega_(1)(f;delta)\omega_{1}\left(f ; \varphi_{x}(t)\right) \leq\left[1+\delta^{-1} \varphi_{x}(t)\right] \omega_{1}(f ; \delta)ω1(f;φx(t))[1+δ1φx(t)]ω1(f;δ)
and
e) | f ( t ) f ( x ) | [ 1 + δ 2 ψ x 2 ( t ) ] ω 1 ( f ; δ ) | f ( t ) f ( x ) | 1 + δ 2 ψ x 2 ( t ) ω 1 ( f ; δ ) |f(t)-f(x)| <= [1+delta^(-2)psi_(x)^(2)(t)]omega_(1)(f;delta)|f(t)-f(x)| \leq\left[1+\delta^{-2} \psi_{x}^{2}(t)\right] \omega_{1}(f ; \delta)|f(t)f(x)|[1+δ2ψx2(t)]ω1(f;δ).
Proof. For proof see [10].
Lemma 1.7. Let A : E ( I ) R A : E ( I ) R A:E(I)rarrRA: E(I) \rightarrow \mathbb{R}A:E(I)R be a linear positive functional. Then
a) for any f , g E ( I ) f , g E ( I ) f,g in E(I)f, g \in E(I)f,gE(I) with f ( x ) g ( x ) f ( x ) g ( x ) f(x) <= g(x)f(x) \leq g(x)f(x)g(x), for any x I x I x in Ix \in IxI, we have A ( f ) A ( g ) A ( f ) A ( g ) A(f) <= A(g)A(f) \leq A(g)A(f)A(g) and
b) | A ( f ) | A ( | f | ) | A ( f ) | A ( | f | ) |A(f)| <= A(|f|)|A(f)| \leq A(|f|)|A(f)|A(|f|), for any f E ( I ) f E ( I ) f in E(I)f \in E(I)fE(I).
Proof. For proof consult [10].

2. PRELIMINARIES

Theorem 2.1. Let I R I R I subRI \subset \mathbb{R}IR be an interval, a I , n N a I , n N a in I,n inNa \in I, n \in \mathbb{N}aI,nN and the function f : I R f : I R f:I rarrRf: I \rightarrow \mathbb{R}f:IR, f f fff is n n nnn times derivable at a. According to Taylor's expansion theorem for the function f f fff around a a aaa, we have
(2.1) f ( x ) = k = 0 n ( x a ) k k ! f ( k ) ( a ) + ( x a ) n μ ( x a ) (2.1) f ( x ) = k = 0 n ( x a ) k k ! f ( k ) ( a ) + ( x a ) n μ ( x a ) {:(2.1)f(x)=sum_(k=0)^(n)((x-a)^(k))/(k!)f^((k))(a)+(x-a)^(n)mu(x-a):}\begin{equation*} f(x)=\sum_{k=0}^{n} \frac{(x-a)^{k}}{k!} f^{(k)}(a)+(x-a)^{n} \mu(x-a) \tag{2.1} \end{equation*}(2.1)f(x)=k=0n(xa)kk!f(k)(a)+(xa)nμ(xa)
where μ μ mu\muμ is a bounded function and lim x a μ ( x a ) = 0 lim x a μ ( x a ) = 0 lim_(x rarr a)mu(x-a)=0\lim _{x \rightarrow a} \mu(x-a)=0limxaμ(xa)=0.
If f ( n ) f ( n ) f^((n))f^{(n)}f(n) is continuous function on I I III, then for any δ > 0 δ > 0 delta > 0\delta>0δ>0
(2.2) | μ ( x a ) | 1 n ! [ 1 + δ 1 | x a | ] ω 1 ( f ( n ) ; δ ) (2.2) | μ ( x a ) | 1 n ! 1 + δ 1 | x a | ω 1 f ( n ) ; δ {:(2.2)|mu(x-a)| <= (1)/(n!)[1+delta^(-1)|x-a|]omega_(1)(f^((n));delta):}\begin{equation*} |\mu(x-a)| \leq \frac{1}{n!}\left[1+\delta^{-1}|x-a|\right] \omega_{1}\left(f^{(n)} ; \delta\right) \tag{2.2} \end{equation*}(2.2)|μ(xa)|1n![1+δ1|xa|]ω1(f(n);δ)
and
(2.3) | μ ( x a ) | 1 n ! [ 1 + δ 2 ( x a ) 2 ] ω 1 ( f ( n ) ; δ ) (2.3) | μ ( x a ) | 1 n ! 1 + δ 2 ( x a ) 2 ω 1 f ( n ) ; δ {:(2.3)|mu(x-a)| <= (1)/(n!)[1+delta^(-2)(x-a)^(2)]omega_(1)(f^((n));delta):}\begin{equation*} |\mu(x-a)| \leq \frac{1}{n!}\left[1+\delta^{-2}(x-a)^{2}\right] \omega_{1}\left(f^{(n)} ; \delta\right) \tag{2.3} \end{equation*}(2.3)|μ(xa)|1n![1+δ2(xa)2]ω1(f(n);δ)
for any x I x I x in Ix \in IxI.
Proof. If n = 0 n = 0 n=0n=0n=0, the proof is immediately. Let n n nnn be a nonzero natural number. According to Taylor's expansion with the Lagrange's remainder, we have
(2.4) f ( x ) = k = 0 n 1 ( x a ) k k ! f ( k ) ( a ) + ( x a ) n n ! f ( n ) ( ξ ) , (2.4) f ( x ) = k = 0 n 1 ( x a ) k k ! f ( k ) ( a ) + ( x a ) n n ! f ( n ) ( ξ ) , {:(2.4)f(x)=sum_(k=0)^(n-1)((x-a)^(k))/(k!)f^((k))(a)+((x-a)^(n))/(n!)f^((n))(xi)",":}\begin{equation*} f(x)=\sum_{k=0}^{n-1} \frac{(x-a)^{k}}{k!} f^{(k)}(a)+\frac{(x-a)^{n}}{n!} f^{(n)}(\xi), \tag{2.4} \end{equation*}(2.4)f(x)=k=0n1(xa)kk!f(k)(a)+(xa)nn!f(n)(ξ),
where ξ ξ xi\xiξ is between a a aaa and x x xxx. From (2.1) and (2.4), we obtain μ ( x a ) = 1 n ! [ f ( n ) ( ξ ) f ( n ) ( a ) ] μ ( x a ) = 1 n ! f ( n ) ( ξ ) f ( n ) ( a ) mu(x-a)=(1)/(n!)[f^((n))(xi)-f^((n))(a)]\mu(x-a)= \frac{1}{n!}\left[f^{(n)}(\xi)-f^{(n)}(a)\right]μ(xa)=1n![f(n)(ξ)f(n)(a)] and because | ξ a | | x a | | ξ a | | x a | |xi-a| <= |x-a||\xi-a| \leq|x-a||ξa||xa|, we have
| μ ( x a ) | = 1 n ! | f ( n ) ( ξ ) f ( n ) ( a ) | 1 n ! sup u , v I | f ( n ) ( u ) f ( n ) ( v ) | | u v | | x a | = 1 n ! ω 1 ( f ( n ) ; | x a | ) | μ ( x a ) | = 1 n ! f ( n ) ( ξ ) f ( n ) ( a ) 1 n ! sup u , v I f ( n ) ( u ) f ( n ) ( v ) | u v | | x a | = 1 n ! ω 1 f ( n ) ; | x a | {:[|mu(x-a)|=(1)/(n!)|f^((n))(xi)-f^((n))(a)|],[ <= (1)/(n!)s u p_(u,v in I)|f^((n))(u)-f^((n))(v)|],[|u-v| <= |x-a|],[=(1)/(n!)omega_(1)(f^((n));|x-a|)]:}\begin{aligned} |\mu(x-a)| & =\frac{1}{n!}\left|f^{(n)}(\xi)-f^{(n)}(a)\right| \\ & \leq \frac{1}{n!} \sup _{u, v \in I}\left|f^{(n)}(u)-f^{(n)}(v)\right| \\ |u-v| \leq|x-a| & \\ & =\frac{1}{n!} \omega_{1}\left(f^{(n)} ;|x-a|\right) \end{aligned}|μ(xa)|=1n!|f(n)(ξ)f(n)(a)|1n!supu,vI|f(n)(u)f(n)(v)||uv||xa|=1n!ω1(f(n);|xa|)
Taking Lemma 1.6 into account, the inequalities 2.2 and 2.3 follow.
Let a , b , a , b a , b , a , b a,b,a^('),b^(')a, b, a^{\prime}, b^{\prime}a,b,a,b be real numbers, I R I R I subRI \subset \mathbb{R}IR interval, a < b , a < b , [ a , b ] I a < b , a < b , [ a , b ] I a < b,a^(') < b^('),[a,b]sub Ia<b, a^{\prime}<b^{\prime},[a, b] \subset Ia<b,a<b,[a,b]I, [ a , b ] I a , b I [a^('),b^(')]sub I\left[a^{\prime}, b^{\prime}\right] \subset I[a,b]I and [ a , b ] [ a , b ] ϕ [ a , b ] a , b ϕ [a,b]nn[a^('),b^(')]!=phi[a, b] \cap\left[a^{\prime}, b^{\prime}\right] \neq \phi[a,b][a,b]ϕ. For any nonzero natural number m m mmm, consider the functions φ m , k : I R φ m , k : I R varphi_(m,k):I rarrR\varphi_{m, k}: I \rightarrow \mathbb{R}φm,k:IR with the property that φ m , k ( x ) 0 φ m , k ( x ) 0 varphi_(m,k)(x) >= 0\varphi_{m, k}(x) \geq 0φm,k(x)0 for any x [ a , b ] x a , b x in[a^('),b^(')]x \in\left[a^{\prime}, b^{\prime}\right]x[a,b] and any k { 0 , 1 , , , m } k { 0 , 1 , , , m } k in{0,1,,dots,m}k \in\{0,1,, \ldots, m\}k{0,1,,,m} and the linear positive functionals A m , k : E ( [ a , b ] ) R A m , k : E ( [ a , b ] ) R A_(m,k):E([a,b])rarrRA_{m, k}: E([a, b]) \rightarrow \mathbb{R}Am,k:E([a,b])R for any k { 0 , 1 , , m } k { 0 , 1 , , m } k in{0,1,dots,m}k \in\{0,1, \ldots, m\}k{0,1,,m}.
Definition 2.2. Let m m mmm be a nonzero natural number. Define the operator L m : E ( [ a , b ] ) F ( I ) L m : E ( [ a , b ] ) F ( I ) L_(m):E([a,b])rarr F(I)L_{m}: E([a, b]) \rightarrow F(I)Lm:E([a,b])F(I) by
(2.5) ( L m f ) ( x ) = k = 0 m φ m , k ( x ) A m , k ( f ) (2.5) L m f ( x ) = k = 0 m φ m , k ( x ) A m , k ( f ) {:(2.5)(L_(m)f)(x)=sum_(k=0)^(m)varphi_(m,k)(x)A_(m,k)(f):}\begin{equation*} \left(L_{m} f\right)(x)=\sum_{k=0}^{m} \varphi_{m, k}(x) A_{m, k}(f) \tag{2.5} \end{equation*}(2.5)(Lmf)(x)=k=0mφm,k(x)Am,k(f)
for any f E ( [ a , b ] ) f E ( [ a , b ] ) f in E([a,b])f \in E([a, b])fE([a,b]) and for any x I x I x inIx \in \mathrm{I}xI.
Proposition 2.3. For m m mmm be a nonzero natural number, the L m L m L_(m)L_{m}Lm operators are linear and positive on E ( [ a , b ] [ a , b ] ) E [ a , b ] a , b E([a,b]nn[a^('),b^(')])E\left([a, b] \cap\left[a^{\prime}, b^{\prime}\right]\right)E([a,b][a,b]).
Proof. The proof follows immediately.
Definition 2.4. Let m m mmm be a nonzero natural number and L m : E ( [ a , b ] ) F ( I ) L m : E ( [ a , b ] ) F ( I ) L_(m):E([a,b])rarr F(I)L_{m}: E([a, b]) \rightarrow F(I)Lm:E([a,b])F(I) be an operator defined in (2.5). For a natural number i i iii, define T m , i T m , i T_(m,i)^(**)T_{m, i}^{*}Tm,i
(2.6) ( T m , i L m ) ( x ) = m i ( L m ψ x i ) ( x ) = m i k = 0 m φ m , k ( x ) A m , k ( ψ x i ) (2.6) T m , i L m ( x ) = m i L m ψ x i ( x ) = m i k = 0 m φ m , k ( x ) A m , k ψ x i {:(2.6)(T_(m,i)^(**)L_(m))(x)=m^(i)(L_(m)psi_(x)^(i))(x)=m^(i)sum_(k=0)^(m)varphi_(m,k)(x)A_(m,k)(psi_(x)^(i)):}\begin{equation*} \left(T_{m, i}^{*} L_{m}\right)(x)=m^{i}\left(L_{m} \psi_{x}^{i}\right)(x)=m^{i} \sum_{k=0}^{m} \varphi_{m, k}(x) A_{m, k}\left(\psi_{x}^{i}\right) \tag{2.6} \end{equation*}(2.6)(Tm,iLm)(x)=mi(Lmψxi)(x)=mik=0mφm,k(x)Am,k(ψxi)
for any x [ a , b ] [ a , b ] x [ a , b ] a , b x in[a,b]nn[a^('),b^(')]x \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right]x[a,b][a,b].

3. MAIN RESULTS

In the following, let s s sss be a fixed natural number, s s sss even and we suppose that the operators ( L m ) m 1 L m m 1 (L_(m))_(m >= 1)\left(L_{m}\right)_{m \geq 1}(Lm)m1 verify the conditions: there exists the smallest α s , α s + 2 [ 0 , ) α s , α s + 2 [ 0 , ) alpha_(s),alpha_(s+2)in[0,oo)\alpha_{s}, \alpha_{s+2} \in[0, \infty)αs,αs+2[0,) so that
(3.1) lim m ( T m , j L m ) ( x ) m α j = B j ( x ) R (3.1) lim m T m , j L m ( x ) m α j = B j ( x ) R {:(3.1)lim_(m rarr oo)((T_(m,j)^(**)L_(m))(x))/(m^(alpha j))=B_(j)(x)inR:}\begin{equation*} \lim _{m \rightarrow \infty} \frac{\left(T_{m, j}^{*} L_{m}\right)(x)}{m^{\alpha j}}=B_{j}(x) \in \mathbb{R} \tag{3.1} \end{equation*}(3.1)limm(Tm,jLm)(x)mαj=Bj(x)R
for any x [ a , b ] [ a , b ] , j { s , s + 2 } x [ a , b ] a , b , j { s , s + 2 } x in[a,b]nn[a^('),b^(')],j in{s,s+2}x \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right], j \in\{s, s+2\}x[a,b][a,b],j{s,s+2} and
(3.2) α s + 2 < α s + 2 (3.2) α s + 2 < α s + 2 {:(3.2)alpha_(s+2) < alpha_(s)+2:}\begin{equation*} \alpha_{s+2}<\alpha_{s}+2 \tag{3.2} \end{equation*}(3.2)αs+2<αs+2
Theorem 3.1. Let f : [ a , b ] R f : [ a , b ] R f:[a,b]rarrRf:[a, b] \rightarrow \mathbb{R}f:[a,b]R be a function.
If x [ a , b ] [ a , b ] x [ a , b ] a , b x in[a,b]nn[a^('),b^(')]x \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right]x[a,b][a,b] and f f fff is a s times derivable function at x x xxx, the function f ( s ) f ( s ) f^((s))f^{(s)}f(s) is continuous at x x xxx, then
(3.3) lim m m s α s [ ( L m f ) ( x ) i = 0 s f ( i ) ( x ) m i i ! ( T m , i L m ) ( x ) ] = 0 (3.3) lim m m s α s L m f ( x ) i = 0 s f ( i ) ( x ) m i i ! T m , i L m ( x ) = 0 {:(3.3)lim_(m rarr oo)m^(s-alpha_(s))[(L_(m)f)(x)-sum_(i=0)^(s)(f^((i))(x))/(m^(i)i!)(T_(m,i)^(**)L_(m))(x)]=0:}\begin{equation*} \lim _{m \rightarrow \infty} m^{s-\alpha_{s}}\left[\left(L_{m} f\right)(x)-\sum_{i=0}^{s} \frac{f^{(i)}(x)}{m^{i} i!}\left(T_{m, i}^{*} L_{m}\right)(x)\right]=0 \tag{3.3} \end{equation*}(3.3)limmmsαs[(Lmf)(x)i=0sf(i)(x)mii!(Tm,iLm)(x)]=0
If f f fff is a s s sss times derivable function on [ a , b ] [ a , b ] [a,b][a, b][a,b], the function f ( s ) f ( s ) f^((s))f^{(s)}f(s) is continuous on [ a , b ] [ a , b ] [a,b][a, b][a,b] and there exists m ( s ) N m ( s ) N m(s)inNm(s) \in \mathbb{N}m(s)N and k j R k j R k_(j)inRk_{j} \in \mathbb{R}kjR so that for any natural number m m mmm, m m ( s ) m m ( s ) m >= m(s)m \geq m(s)mm(s) and for any x [ a , b ] [ a , b ] x [ a , b ] a , b x in[a,b]nn[a^('),b^(')]x \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right]x[a,b][a,b] we have
(3.4) ( T m , j L m ) ( x ) m α j k j (3.4) T m , j L m ( x ) m α j k j {:(3.4)((T_(m,j)^(**)L_(m))(x))/(m^(alpha_(j))) <= k_(j):}\begin{equation*} \frac{\left(T_{m, j}^{*} L_{m}\right)(x)}{m^{\alpha_{j}}} \leq k_{j} \tag{3.4} \end{equation*}(3.4)(Tm,jLm)(x)mαjkj
where j { s , s + 2 } j { s , s + 2 } j in{s,s+2}j \in\{s, s+2\}j{s,s+2}, then the convergence given in (3.3) is uniform on [ a , b ] [ a , b ] [a,b]nn[a, b] \cap[a,b] [ a , b a , b a^('),b^(')a^{\prime}, b^{\prime}a,b ] and
(3.5) m s α s | ( L m f ) ( x ) i = 0 s f ( i ) ( x ) m i i ! ( T m , i L m ) ( x ) | 1 s ! ( k s + k s + 2 ) ω 1 ( f ( s ) ; 1 m 2 + α s α s + 2 ) (3.5) m s α s L m f ( x ) i = 0 s f ( i ) ( x ) m i i ! T m , i L m ( x ) 1 s ! k s + k s + 2 ω 1 f ( s ) ; 1 m 2 + α s α s + 2 {:[(3.5)m^(s-alpha_(s))|(L_(m)f)(x)-sum_(i=0)^(s)(f^((i))(x))/(m^(i)i!)(T_(m,i)^(**)L_(m))(x)| <= ],[ <= (1)/(s!)(k_(s)+k_(s+2))omega_(1)(f^((s));(1)/(sqrt(m^(2+alpha_(s)-alpha_(s+2)))))]:}\begin{align*} & m^{s-\alpha_{s}}\left|\left(L_{m} f\right)(x)-\sum_{i=0}^{s} \frac{f^{(i)}(x)}{m^{i} i!}\left(T_{m, i}^{*} L_{m}\right)(x)\right| \leq \tag{3.5}\\ & \leq \frac{1}{s!}\left(k_{s}+k_{s+2}\right) \omega_{1}\left(f^{(s)} ; \frac{1}{\sqrt{m^{2+\alpha_{s}-\alpha_{s+2}}}}\right) \end{align*}(3.5)msαs|(Lmf)(x)i=0sf(i)(x)mii!(Tm,iLm)(x)|1s!(ks+ks+2)ω1(f(s);1m2+αsαs+2)
for any x [ a , b ] [ a , b ] x [ a , b ] a , b x in[a,b]nn[a^('),b^(')]x \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right]x[a,b][a,b], for any natural number m , m m ( s ) m , m m ( s ) m,m >= m(s)m, m \geq m(s)m,mm(s).
Proof. Let m m mmm be a nonzero natural number. According to Taylor's theorem for the function f f fff around x x xxx, we have
(3.6) f ( t ) = i = 0 s ( t x ) i i ! f ( i ) ( x ) + ( t x ) s μ ( t x ) (3.6) f ( t ) = i = 0 s ( t x ) i i ! f ( i ) ( x ) + ( t x ) s μ ( t x ) {:(3.6)f(t)=sum_(i=0)^(s)((t-x)^(i))/(i!)f^((i))(x)+(t-x)^(s)mu(t-x):}\begin{equation*} f(t)=\sum_{i=0}^{s} \frac{(t-x)^{i}}{i!} f^{(i)}(x)+(t-x)^{s} \mu(t-x) \tag{3.6} \end{equation*}(3.6)f(t)=i=0s(tx)ii!f(i)(x)+(tx)sμ(tx)
where μ μ mu\muμ is a bounded function and lim t x μ ( t x ) = 0 lim t x μ ( t x ) = 0 lim_(t rarr x)mu(t-x)=0\lim _{t \rightarrow x} \mu(t-x)=0limtxμ(tx)=0.
Taking that A m , k A m , k A_(m,k)A_{m, k}Am,k is the linear positive functional into account, from (3.6) we have
A m , k ( f ) = i = 0 s f ( i ) ( x ) i ! A m , k ( ψ x i ) + A m , k ( ψ x s μ x ) A m , k ( f ) = i = 0 s f ( i ) ( x ) i ! A m , k ψ x i + A m , k ψ x s μ x A_(m,k)(f)=sum_(i=0)^(s)(f^((i))(x))/(i!)A_(m,k)(psi_(x)^(i))+A_(m,k)(psi_(x)^(s)mu_(x))A_{m, k}(f)=\sum_{i=0}^{s} \frac{f^{(i)}(x)}{i!} A_{m, k}\left(\psi_{x}^{i}\right)+A_{m, k}\left(\psi_{x}^{s} \mu_{x}\right)Am,k(f)=i=0sf(i)(x)i!Am,k(ψxi)+Am,k(ψxsμx)
where μ x : [ a , b ] μ x ( t ) = μ ( t x ) μ x : [ a , b ] μ x ( t ) = μ ( t x ) mu_(x):[a,b]rarrmu_(x)(t)=mu(t-x)\mu_{x}:[a, b] \rightarrow \mu_{x}(t)=\mu(t-x)μx:[a,b]μx(t)=μ(tx), for any t [ a , b ] [ a , b ] t [ a , b ] a , b t in[a,b]nn[a^('),b^(')]t \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right]t[a,b][a,b].
Multiplying by φ m , k ( x ) φ m , k ( x ) varphi_(m,k)(x)\varphi_{m, k}(x)φm,k(x) and summing after k k kkk, where k { 0 , 1 , , m } k { 0 , 1 , , m } k in{0,1,dots,m}k \in\{0,1, \ldots, m\}k{0,1,,m}, we obtain
( L m f ) ( x ) = i = 0 s f ( i ) ( x ) i ! ( L m ψ x i ) ( x ) + k = 0 m φ m , k ( x ) A m , k ( ψ x s μ x ) L m f ( x ) = i = 0 s f ( i ) ( x ) i ! L m ψ x i ( x ) + k = 0 m φ m , k ( x ) A m , k ψ x s μ x (L_(m)f)(x)=sum_(i=0)^(s)(f^((i))(x))/(i!)(L_(m)psi_(x)^(i))(x)+sum_(k=0)^(m)varphi_(m,k)(x)A_(m,k)(psi_(x)^(s)mu_(x))\left(L_{m} f\right)(x)=\sum_{i=0}^{s} \frac{f^{(i)}(x)}{i!}\left(L_{m} \psi_{x}^{i}\right)(x)+\sum_{k=0}^{m} \varphi_{m, k}(x) A_{m, k}\left(\psi_{x}^{s} \mu_{x}\right)(Lmf)(x)=i=0sf(i)(x)i!(Lmψxi)(x)+k=0mφm,k(x)Am,k(ψxsμx)
from which
(3.7) m s α s [ ( L m f ) ( x ) i = 0 s f ( i ) ( x ) m i i ! ( T m , i L m ) ( x ) ] = ( R m f ) ( x ) (3.7) m s α s L m f ( x ) i = 0 s f ( i ) ( x ) m i i ! T m , i L m ( x ) = R m f ( x ) {:(3.7)m^(s-alpha_(s))[(L_(m)f)(x)-sum_(i=0)^(s)(f^((i))(x))/(m^(i)i!)(T_(m,i)^(**)L_(m))(x)]=(R_(m)f)(x):}\begin{equation*} m^{s-\alpha_{s}}\left[\left(L_{m} f\right)(x)-\sum_{i=0}^{s} \frac{f^{(i)}(x)}{m^{i} i!}\left(T_{m, i}^{*} L_{m}\right)(x)\right]=\left(R_{m} f\right)(x) \tag{3.7} \end{equation*}(3.7)msαs[(Lmf)(x)i=0sf(i)(x)mii!(Tm,iLm)(x)]=(Rmf)(x)
where
(3.8) ( R m f ) ( x ) = m s α s k = 0 m φ m , k ( x ) A m , k ( ψ x s μ x ) (3.8) R m f ( x ) = m s α s k = 0 m φ m , k ( x ) A m , k ψ x s μ x {:(3.8)(R_(m)f)(x)=m^(s-alpha_(s))sum_(k=0)^(m)varphi_(m,k)(x)A_(m,k)(psi_(x)^(s)mu_(x)):}\begin{equation*} \left(R_{m} f\right)(x)=m^{s-\alpha_{s}} \sum_{k=0}^{m} \varphi_{m, k}(x) A_{m, k}\left(\psi_{x}^{s} \mu_{x}\right) \tag{3.8} \end{equation*}(3.8)(Rmf)(x)=msαsk=0mφm,k(x)Am,k(ψxsμx)
Then
| ( R m f ) ( x ) | m s α s k = 0 m φ m , k ( x ) | A m , k ( ψ x s μ x ) | R m f ( x ) m s α s k = 0 m φ m , k ( x ) A m , k ψ x s μ x |(R_(m)f)(x)| <= m^(s-alpha_(s))sum_(k=0)^(m)varphi_(m,k)(x)|A_(m,k)(psi_(x)^(s)mu_(x))|\left|\left(R_{m} f\right)(x)\right| \leq m^{s-\alpha_{s}} \sum_{k=0}^{m} \varphi_{m, k}(x)\left|A_{m, k}\left(\psi_{x}^{s} \mu_{x}\right)\right||(Rmf)(x)|msαsk=0mφm,k(x)|Am,k(ψxsμx)|
and taking Lemma 1.7 into account, we obtain
(3.9) | ( R m f ) ( x ) | m s α s k = 0 m φ m , k ( x ) A m , k ( ψ x s | μ x | ) (3.9) R m f ( x ) m s α s k = 0 m φ m , k ( x ) A m , k ψ x s μ x {:(3.9)|(R_(m)f)(x)| <= m^(s-alpha_(s))sum_(k=0)^(m)varphi_(m,k)(x)A_(m,k)(psi_(x)^(s)|mu_(x)|):}\begin{equation*} \left|\left(R_{m} f\right)(x)\right| \leq m^{s-\alpha_{s}} \sum_{k=0}^{m} \varphi_{m, k}(x) A_{m, k}\left(\psi_{x}^{s}\left|\mu_{x}\right|\right) \tag{3.9} \end{equation*}(3.9)|(Rmf)(x)|msαsk=0mφm,k(x)Am,k(ψxs|μx|)
According to the relation (2.3), for any δ > 0 δ > 0 delta > 0\delta>0δ>0 and for any t [ a , b ] [ a , b ] t [ a , b ] a , b t in[a,b]nn[a^('),b^(')]t \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right]t[a,b][a,b], we have
| μ x ( t ) | = | μ ( t x ) | 1 s ! [ 1 + δ 2 ψ x 2 ( t ) ] ω 1 ( f ( s ) ; δ ) μ x ( t ) = | μ ( t x ) | 1 s ! 1 + δ 2 ψ x 2 ( t ) ω 1 f ( s ) ; δ |mu_(x)(t)|=|mu(t-x)| <= (1)/(s!)[1+delta^(-2)psi_(x)^(2)(t)]omega_(1)(f^((s));delta)\left|\mu_{x}(t)\right|=|\mu(t-x)| \leq \frac{1}{s!}\left[1+\delta^{-2} \psi_{x}^{2}(t)\right] \omega_{1}\left(f^{(s)} ; \delta\right)|μx(t)|=|μ(tx)|1s![1+δ2ψx2(t)]ω1(f(s);δ)
and so
(3.10) ( ψ x s | μ x | ) ( t ) 1 s ! [ ψ x s ( t ) + δ 2 ψ x s + 2 ( t ) ] ω 1 ( f ( s ) ; δ ) (3.10) ψ x s μ x ( t ) 1 s ! ψ x s ( t ) + δ 2 ψ x s + 2 ( t ) ω 1 f ( s ) ; δ {:(3.10)(psi_(x)^(s)|mu_(x)|)(t) <= (1)/(s!)[psi_(x)^(s)(t)+delta^(-2)psi_(x)^(s+2)(t)]omega_(1)(f^((s));delta):}\begin{equation*} \left(\psi_{x}^{s}\left|\mu_{x}\right|\right)(t) \leq \frac{1}{s!}\left[\psi_{x}^{s}(t)+\delta^{-2} \psi_{x}^{s+2}(t)\right] \omega_{1}\left(f^{(s)} ; \delta\right) \tag{3.10} \end{equation*}(3.10)(ψxs|μx|)(t)1s![ψxs(t)+δ2ψxs+2(t)]ω1(f(s);δ)
From 3.9 and 3.10, it results that
| ( R m f ) ( x ) | 1 s ! m s α s [ k = 0 m φ m , k ( x ) A m , k ( ψ x s ) + + δ 2 k = 0 m φ m , k ( x ) A m , k ( ψ x s + 2 ) ] ω 1 ( f ( s ) ; δ ) R m f ( x ) 1 s ! m s α s [ k = 0 m φ m , k ( x ) A m , k ψ x s + + δ 2 k = 0 m φ m , k ( x ) A m , k ψ x s + 2 ω 1 f ( s ) ; δ {:[|(R_(m)f)(x)| <= (1)/(s!)m^(s-alpha_(s))[sum_(k=0)^(m)varphi_(m,k)(x)A_(m,k)(psi_(x)^(s))+],[{:+delta^(-2)sum_(k=0)^(m)varphi_(m,k)(x)A_(m,k)(psi_(x)^(s+2))]omega_(1)(f^((s));delta)]:}\begin{aligned} \left|\left(R_{m} f\right)(x)\right| \leq \frac{1}{s!} m^{s-\alpha_{s}}[ & \sum_{k=0}^{m} \varphi_{m, k}(x) A_{m, k}\left(\psi_{x}^{s}\right)+ \\ & \left.+\delta^{-2} \sum_{k=0}^{m} \varphi_{m, k}(x) A_{m, k}\left(\psi_{x}^{s+2}\right)\right] \omega_{1}\left(f^{(s)} ; \delta\right) \end{aligned}|(Rmf)(x)|1s!msαs[k=0mφm,k(x)Am,k(ψxs)++δ2k=0mφm,k(x)Am,k(ψxs+2)]ω1(f(s);δ)
thus
| ( R m f ) ( x ) | 1 s ! [ ( T m , s L m ) ( x ) m α s + δ 2 ( T m , s + 2 L m ) ( x ) m α s + 2 m 2 α s + α s + 2 ] ω 1 ( f ( s ) ; δ ) R m f ( x ) 1 s ! T m , s L m ( x ) m α s + δ 2 T m , s + 2 L m ( x ) m α s + 2 m 2 α s + α s + 2 ω 1 f ( s ) ; δ |(R_(m)f)(x)| <= (1)/(s!)[((T_(m,s)^(**)L_(m))(x))/(m^(alpha_(s)))+delta^(-2)((T_(m,s+2)^(**)L_(m))(x))/(m^(alpha_(s+2)))m^(-2-alpha_(s)+alpha_(s+2))]omega_(1)(f^((s));delta)\left|\left(R_{m} f\right)(x)\right| \leq \frac{1}{s!}\left[\frac{\left(T_{m, s}^{*} L_{m}\right)(x)}{m^{\alpha_{s}}}+\delta^{-2} \frac{\left(T_{m, s+2}^{*} L_{m}\right)(x)}{m^{\alpha_{s+2}}} m^{-2-\alpha_{s}+\alpha_{s+2}}\right] \omega_{1}\left(f^{(s)} ; \delta\right)|(Rmf)(x)|1s![(Tm,sLm)(x)mαs+δ2(Tm,s+2Lm)(x)mαs+2m2αs+αs+2]ω1(f(s);δ)
Considering δ = 1 m 2 + α 2 α s + 2 δ = 1 m 2 + α 2 α s + 2 delta=(1)/(sqrt(m^(2+alpha_(2)-alpha_(s+2))))\delta=\frac{1}{\sqrt{m^{2+\alpha_{2}-\alpha_{s+2}}}}δ=1m2+α2αs+2, the inequality above becomes
(3.11) | ( R m f ) ( x ) | 1 s ! [ ( T m , s L m ) ( x ) m α s + ( T m , s + 2 L m ) ( x ) m α s + 2 ] ω 1 ( f ( s ) ; 1 m 2 + α s α s + 2 ) (3.11) R m f ( x ) 1 s ! T m , s L m ( x ) m α s + T m , s + 2 L m ( x ) m α s + 2 ω 1 f ( s ) ; 1 m 2 + α s α s + 2 {:(3.11)|(R_(m)f)(x)| <= (1)/(s!)[((T_(m,s)^(**)L_(m))(x))/(m^(alpha_(s)))+((T_(m,s+2)^(**)L_(m))(x))/(m^(alpha_(s+2)))]omega_(1)(f^((s));(1)/(sqrt(m^(2+alpha_(s)-alpha_(s+2))))):}\begin{equation*} \left|\left(R_{m} f\right)(x)\right| \leq \frac{1}{s!}\left[\frac{\left(T_{m, s}^{*} L_{m}\right)(x)}{m^{\alpha_{s}}}+\frac{\left(T_{m, s+2}^{*} L_{m}\right)(x)}{m^{\alpha_{s+2}}}\right] \omega_{1}\left(f^{(s)} ; \frac{1}{\sqrt{m^{2+\alpha_{s}-\alpha_{s+2}}}}\right) \tag{3.11} \end{equation*}(3.11)|(Rmf)(x)|1s![(Tm,sLm)(x)mαs+(Tm,s+2Lm)(x)mαs+2]ω1(f(s);1m2+αsαs+2)
Taking (3.1) and (3.2) into account and considering the fact that
lim m ω 1 ( f ( s ) ; 1 m 2 + α s α s + 2 ) = ω 1 ( f ( s ) ; 0 ) = 0 lim m ω 1 f ( s ) ; 1 m 2 + α s α s + 2 = ω 1 f ( s ) ; 0 = 0 lim_(m rarr oo)omega_(1)(f^((s));(1)/(sqrt(m^(2+alpha_(s)-alpha_(s+2)))))=omega_(1)(f^((s));0)=0\lim _{m \rightarrow \infty} \omega_{1}\left(f^{(s)} ; \frac{1}{\sqrt{m^{2+\alpha_{s}-\alpha_{s+2}}}}\right)=\omega_{1}\left(f^{(s)} ; 0\right)=0limmω1(f(s);1m2+αsαs+2)=ω1(f(s);0)=0
we have that
(3.12) lim m ( R m f ) ( x ) = 0 . (3.12) lim m R m f ( x ) = 0 . {:(3.12)lim_(m rarr oo)(R_(m)f)(x)=0.:}\begin{equation*} \lim _{m \rightarrow \infty}\left(R_{m} f\right)(x)=0 . \tag{3.12} \end{equation*}(3.12)limm(Rmf)(x)=0.
From 3.7 and 3.12 , 3.3 follows.
If in addition (3.4) takes place, then (3.11) becomes
(3.13) | ( R m f ) ( x ) | 1 s ! ( k s + k s + 2 ) ω 1 ( f ( s ) ; 1 m 2 + α s α s + 2 ) , (3.13) R m f ( x ) 1 s ! k s + k s + 2 ω 1 f ( s ) ; 1 m 2 + α s α s + 2 , {:(3.13)|(R_(m)f)(x)| <= (1)/(s!)(k_(s)+k_(s+2))omega_(1)(f^((s));(1)/(sqrt(m^(2+alpha_(s)-alpha_(s+2)))))",":}\begin{equation*} \left|\left(R_{m} f\right)(x)\right| \leq \frac{1}{s!}\left(k_{s}+k_{s+2}\right) \omega_{1}\left(f^{(s)} ; \frac{1}{\sqrt{m^{2+\alpha_{s}-\alpha_{s+2}}}}\right), \tag{3.13} \end{equation*}(3.13)|(Rmf)(x)|1s!(ks+ks+2)ω1(f(s);1m2+αsαs+2),
for any natural number m , m m ( s ) m , m m ( s ) m,m >= m(s)m, m \geq m(s)m,mm(s) and for any x [ a , b ] [ a , b ] x [ a , b ] a , b x in[a,b]nn[a^('),b^(')]x \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right]x[a,b][a,b], from which, the convergence from (3.3) is uniform on [ a , b ] [ a , b ] [ a , b ] a , b [a,b]nn[a^('),b^(')][a, b] \cap\left[a^{\prime}, b^{\prime}\right][a,b][a,b]. From (3.8) and (3.13), 3.6) follows.
Corollary 3.2. Let f : [ a , b ] R f : [ a , b ] R f:[a,b]rarrRf:[a, b] \rightarrow \mathbb{R}f:[a,b]R be a function. If x [ a , b ] [ a , b ] x [ a , b ] a , b x in[a,b]nn[a^('),b^(')]x \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right]x[a,b][a,b] and f f fff is s s sss times derivable and the function f ( s ) f ( s ) f^((s))f^{(s)}f(s) is continuous at x x xxx, then
(3.14) lim m ( L m f ) ( x ) = f ( x ) (3.14) lim m L m f ( x ) = f ( x ) {:(3.14)lim_(m rarr oo)(L_(m)f)(x)=f(x):}\begin{equation*} \lim _{m \rightarrow \infty}\left(L_{m} f\right)(x)=f(x) \tag{3.14} \end{equation*}(3.14)limm(Lmf)(x)=f(x)
if s = 0 s = 0 s=0s=0s=0 and
(3.15) lim m m s α s [ ( L m f ) ( x ) i = 0 s 1 f ( i ) ( x ) m i i ! ( T m , i L m ) ( x ) ] = f ( s ) ( x ) s ! B s ( x ) (3.15) lim m m s α s L m f ( x ) i = 0 s 1 f ( i ) ( x ) m i i ! T m , i L m ( x ) = f ( s ) ( x ) s ! B s ( x ) {:(3.15)lim_(m rarr oo)m^(s-alpha_(s))[(L_(m)f)(x)-sum_(i=0)^(s-1)(f^((i))(x))/(m^(i)i!)(T_(m,i)^(**)L_(m))(x)]=(f^((s))(x))/(s!)B_(s)(x):}\begin{equation*} \lim _{m \rightarrow \infty} m^{s-\alpha_{s}}\left[\left(L_{m} f\right)(x)-\sum_{i=0}^{s-1} \frac{f^{(i)}(x)}{m^{i} i!}\left(T_{m, i}^{*} L_{m}\right)(x)\right]=\frac{f^{(s)}(x)}{s!} B_{s}(x) \tag{3.15} \end{equation*}(3.15)limmmsαs[(Lmf)(x)i=0s1f(i)(x)mii!(Tm,iLm)(x)]=f(s)(x)s!Bs(x)
if s 2 s 2 s >= 2s \geq 2s2.
If f f fff is a s times derivable function on [ a , b ] [ a , b ] [ a , b ] a , b [a,b]nn[a^('),b^(')][a, b] \cap\left[a^{\prime}, b^{\prime}\right][a,b][a,b], the function f ( s ) f ( s ) f^((s))f^{(s)}f(s) is continuous on [ a , b ] [ a , b ] [ a , b ] a , b [a,b]nn[a^('),b^(')][a, b] \cap\left[a^{\prime}, b^{\prime}\right][a,b][a,b] and (3.4) takes place, then the convergences from (3.14) and (3.15) are uniform on [ a , b ] [ a , b ] [ a , b ] a , b [a,b]nn[a^('),b^(')][a, b] \cap\left[a^{\prime}, b^{\prime}\right][a,b][a,b].
Proof. It results from Theorem 3.1.
In the following, consider that φ m , k = p m , k φ m , k = p m , k varphi_(m,k)=p_(m,k)\varphi_{m, k}=p_{m, k}φm,k=pm,k for any m , k m , k m,km, km,k an natural numbers, m 0 m 0 m!=0m \neq 0m0 and k { 0 , 1 , , m } k { 0 , 1 , , m } k in{0,1,dots,m}k \in\{0,1, \ldots, m\}k{0,1,,m}.
Application 3.3. We consider a = a = 0 , b = b = 1 a = a = 0 , b = b = 1 a=a^(')=0,b=b^(')=1a=a^{\prime}=0, b=b^{\prime}=1a=a=0,b=b=1.For any nonzero natural number m m mmm, let the functionals A m , k : C ( [ 0 , 1 ] ) R , A m , k ( f ) = f ( k m ) A m , k : C ( [ 0 , 1 ] ) R , A m , k ( f ) = f k m A_(m,k):C([0,1])rarrR,A_(m,k)(f)=f((k)/(m))A_{m, k}: C([0,1]) \rightarrow \mathbb{R}, A_{m, k}(f)=f\left(\frac{k}{m}\right)Am,k:C([0,1])R,Am,k(f)=f(km), for any k { 0 , 1 , , m } k { 0 , 1 , , m } k in{0,1,dots,m}k \in\{0,1, \ldots, m\}k{0,1,,m} and for any f C ( [ 0 , 1 ] ) f C ( [ 0 , 1 ] ) f in C([0,1])f \in C([0,1])fC([0,1]). In this application, we obtain the Bernstein operators and if i i iii is a natural number, then
(3.16) ( T m , i B m ) ( x ) = m i k = 0 m p m , k ( x ) ( k m x ) i = T m , i ( x ) (3.16) T m , i B m ( x ) = m i k = 0 m p m , k ( x ) k m x i = T m , i ( x ) {:(3.16)(T_(m,i)^(**)B_(m))(x)=m^(i)sum_(k=0)^(m)p_(m,k)(x)((k)/(m)-x)^(i)=T_(m,i)(x):}\begin{equation*} \left(T_{m, i}^{*} B_{m}\right)(x)=m^{i} \sum_{k=0}^{m} p_{m, k}(x)\left(\frac{k}{m}-x\right)^{i}=T_{m, i}(x) \tag{3.16} \end{equation*}(3.16)(Tm,iBm)(x)=mik=0mpm,k(x)(kmx)i=Tm,i(x)
for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] (see [6] or [10]).
In [6] are the results contained in the following theorem.
Theorem 3.4. If i i iii is a natural number, then
(3.17) lim m ( T m , i B m ) ( x ) m [ i 2 ] = [ x ( 1 x ) ] [ i 2 ] ( a i x + b i ) , (3.17) lim m T m , i B m ( x ) m i 2 = [ x ( 1 x ) ] i 2 a i x + b i , {:(3.17)lim_(m rarr oo)((T_(m,i)^(**)B_(m))(x))/(m^([(i)/(2)]))=[x(1-x)]^([(i)/(2)])(a_(i)x+b_(i))",":}\begin{equation*} \lim _{m \rightarrow \infty} \frac{\left(T_{m, i}^{*} B_{m}\right)(x)}{m^{\left[\frac{i}{2}\right]}}=[x(1-x)]^{\left[\frac{i}{2}\right]}\left(a_{i} x+b_{i}\right), \tag{3.17} \end{equation*}(3.17)limm(Tm,iBm)(x)m[i2]=[x(1x)][i2](aix+bi),
for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1], where
(3.18) a i = { 0 , if i is even or i = 1 ( i 1 ) ! ! k = 1 [ i 2 ] ( 2 k 1 ) ! ! ( 2 k 2 ) ! ! , if i is odd , i 3 (3.18) a i = 0 ,  if  i  is even or  i = 1 ( i 1 ) ! ! k = 1 i 2 ( 2 k 1 ) ! ! ( 2 k 2 ) ! ! ,  if  i  is odd  , i 3 {:(3.18)a_(i)={[0","," if "i" is even or "i=1],[-(i-1)!!sum_(k=1)^([(i)/(2)])((2k-1)!!)/((2k-2)!!)","," if "i" is odd "","i >= 3]:}:}a_{i}= \begin{cases}0, & \text { if } i \text { is even or } i=1 \tag{3.18}\\ -(i-1)!!\sum_{k=1}^{\left[\frac{i}{2}\right]} \frac{(2 k-1)!!}{(2 k-2)!!}, & \text { if } i \text { is odd }, i \geq 3\end{cases}(3.18)ai={0, if i is even or i=1(i1)!!k=1[i2](2k1)!!(2k2)!!, if i is odd ,i3
and
(3.19) b i = { 1 , if i = 0 0 , if i = 1 ( i 1 ) ! ! , if i is even , i 2 1 2 ( i 1 ) ! ! k = 1 [ i 2 ] ( 2 k 1 ) ! ! ( 2 k 2 ) ! ! , if i is odd , i 3 (3.19) b i = 1 ,  if  i = 0 0 ,  if  i = 1 ( i 1 ) ! ! ,  if  i  is even  , i 2 1 2 ( i 1 ) ! ! k = 1 i 2 ( 2 k 1 ) ! ! ( 2 k 2 ) ! ! ,  if  i  is odd  , i 3 {:(3.19)b_(i)={[1","," if "i=0],[0","," if "i=1],[(i-1)!!","," if "i" is even "","quad i >= 2],[(1)/(2)(i-1)!!sum_(k=1)^([(i)/(2)])((2k-1)!!)/((2k-2)!!)","," if "i" is odd "","quad i >= 3]:}:}b_{i}= \begin{cases}1, & \text { if } i=0 \tag{3.19}\\ 0, & \text { if } i=1 \\ (i-1)!!, & \text { if } i \text { is even }, \quad i \geq 2 \\ \frac{1}{2}(i-1)!!\sum_{k=1}^{\left[\frac{i}{2}\right]} \frac{(2 k-1)!!}{(2 k-2)!!}, & \text { if } i \text { is odd }, \quad i \geq 3\end{cases}(3.19)bi={1, if i=00, if i=1(i1)!!, if i is even ,i212(i1)!!k=1[i2](2k1)!!(2k2)!!, if i is odd ,i3
If s s sss is a natural number, s s sss even and j { s , s + 2 } j { s , s + 2 } j in{s,s+2}j \in\{s, s+2\}j{s,s+2}, then a j = 0 a j = 0 a_(j)=0a_{j}=0aj=0,
b j = { 1 , if j = 0 ( j 1 ) ! ! , if j 2 b j = 1 ,       if  j = 0 ( j 1 ) ! ! ,       if  j 2 b_(j)={[1","," if "j=0],[(j-1)!!","," if "j >= 2]:}b_{j}= \begin{cases}1, & \text { if } j=0 \\ (j-1)!!, & \text { if } j \geq 2\end{cases}bj={1, if j=0(j1)!!, if j2
and then from (3.17) it results that there exists a natural number m ( s ) m ( s ) m(s)m(s)m(s) so that
(3.20) | ( T m , j B m ) ( x ) m j 2 [ x ( 1 x ) ] j 2 b j | < 1 (3.20) T m , j B m ( x ) m j 2 [ x ( 1 x ) ] j 2 b j < 1 {:(3.20)|((T_(m,j)^(**)B_(m))(x))/(m^((j)/(2)))-[x(1-x)]^((j)/(2))b_(j)| < 1:}\begin{equation*} \left|\frac{\left(T_{m, j}^{*} B_{m}\right)(x)}{m^{\frac{j}{2}}}-[x(1-x)]^{\frac{j}{2}} b_{j}\right|<1 \tag{3.20} \end{equation*}(3.20)|(Tm,jBm)(x)mj2[x(1x)]j2bj|<1
for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] and for any natural number m , m m ( s ) m , m m ( s ) m,m >= m(s)m, m \geq m(s)m,mm(s). But x ( 1 x ) 1 4 x ( 1 x ) 1 4 x(1-x) <= (1)/(4)x(1-x) \leq \frac{1}{4}x(1x)14 for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] and then (3.20) becomes
(3.21) ( T m , j B m ) ( x ) m j 2 ( 1 4 ) j 2 b j + 1 = k j (3.21) T m , j B m ( x ) m j 2 1 4 j 2 b j + 1 = k j {:(3.21)((T_(m,j)^(**)B_(m))(x))/(m^((j)/(2))) <= ((1)/(4))^((j)/(2))b_(j)+1=k_(j):}\begin{equation*} \frac{\left(T_{m, j}^{*} B_{m}\right)(x)}{m^{\frac{j}{2}}} \leq\left(\frac{1}{4}\right)^{\frac{j}{2}} b_{j}+1=k_{j} \tag{3.21} \end{equation*}(3.21)(Tm,jBm)(x)mj2(14)j2bj+1=kj
for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] and for any natural number m , m m ( s ) m , m m ( s ) m,m >= m(s)m, m \geq m(s)m,mm(s), where j { s , s + 2 } j { s , s + 2 } j in{s,s+2}j \in \{s, s+2\}j{s,s+2}.
Because the conditions 3.2 and 3.4 take place, where α j = j 2 , j { s , s + α j = j 2 , j { s , s + alpha_(j)=(j)/(2),j in{s,s+\alpha_{j}=\frac{j}{2}, j \in\{s, s+αj=j2,j{s,s+ 2 }, Theorem 3.1 and Corollary 3.2 are enounced thus:
Theorem 3.5. Let f : [ 0 , 1 ] R f : [ 0 , 1 ] R f:[0,1]rarrRf:[0,1] \rightarrow \mathbb{R}f:[0,1]R be a function. If x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] and f f fff is a s s sss times derivable function at x x xxx and the function f ( s ) f ( s ) f^((s))f^{(s)}f(s) is continuous at x x xxx, then
(3.22) lim m ( B m f ) ( x ) = f ( x ) (3.22) lim m B m f ( x ) = f ( x ) {:(3.22)lim_(m rarr oo)(B_(m)f)(x)=f(x):}\begin{equation*} \lim _{m \rightarrow \infty}\left(B_{m} f\right)(x)=f(x) \tag{3.22} \end{equation*}(3.22)limm(Bmf)(x)=f(x)
if s = 0 s = 0 s=0s=0s=0,
(3.23) lim m m s 2 [ ( B m f ) ( x ) i = 0 s f ( i ) ( x ) m i i ! ( T m , i B m ) ( x ) ] = 0 (3.23) lim m m s 2 B m f ( x ) i = 0 s f ( i ) ( x ) m i i ! T m , i B m ( x ) = 0 {:(3.23)lim_(m rarr oo)m^((s)/(2))[(B_(m)f)(x)-sum_(i=0)^(s)(f^((i))(x))/(m^(i)i!)(T_(m,i)^(**)B_(m))(x)]=0:}\begin{equation*} \lim _{m \rightarrow \infty} m^{\frac{s}{2}}\left[\left(B_{m} f\right)(x)-\sum_{i=0}^{s} \frac{f^{(i)}(x)}{m^{i} i!}\left(T_{m, i}^{*} B_{m}\right)(x)\right]=0 \tag{3.23} \end{equation*}(3.23)limmms2[(Bmf)(x)i=0sf(i)(x)mii!(Tm,iBm)(x)]=0
if s s sss is a natural number and
(3.24) lim m m s 2 [ ( B m f ) ( x ) i = 0 s 1 f ( i ) ( x ) m i ! ( T m , i B m ) ( x ) ] = ( s 1 ) ! ! s ! [ x ( 1 x ) ] s 2 f ( s ) ( x ) (3.24) lim m m s 2 B m f ( x ) i = 0 s 1 f ( i ) ( x ) m i ! T m , i B m ( x ) = ( s 1 ) ! ! s ! [ x ( 1 x ) ] s 2 f ( s ) ( x ) {:(3.24)lim_(m rarr oo)m^((s)/(2))[(B_(m)f)(x)-sum_(i=0)^(s-1)(f^((i))(x))/(m^(i)!)(T_(m,i)^(**)B_(m))(x)]=((s-1)!!)/(s!)[x(1-x)]^((s)/(2))f^((s))(x):}\begin{equation*} \lim _{m \rightarrow \infty} m^{\frac{s}{2}}\left[\left(B_{m} f\right)(x)-\sum_{i=0}^{s-1} \frac{f^{(i)}(x)}{m^{i}!}\left(T_{m, i}^{*} B_{m}\right)(x)\right]=\frac{(s-1)!!}{s!}[x(1-x)]^{\frac{s}{2}} f^{(s)}(x) \tag{3.24} \end{equation*}(3.24)limmms2[(Bmf)(x)i=0s1f(i)(x)mi!(Tm,iBm)(x)]=(s1)!!s![x(1x)]s2f(s)(x)
if s 2 s 2 s >= 2s \geq 2s2.
If f f fff is a s s sss times derivable function on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1], the function f ( s ) f ( s ) f^((s))f^{(s)}f(s) is continuous on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1], then the convergences from (3.22)-(3.24) are uniform on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1].
Remark 3.1. For s = 2 s = 2 s=2s=2s=2 in (3.24) we obtain the Voronovskaja's theorem.
Application 3.6. Consider a = a = 0 , b = b = 1 a = a = 0 , b = b = 1 a=a^(')=0,b=b^(')=1a=a^{\prime}=0, b=b^{\prime}=1a=a=0,b=b=1. For any nonzero natural number m m mmm, let the functionals A m , k : L 1 ( [ 0 , 1 ] ) R A m , k : L 1 ( [ 0 , 1 ] ) R A_(m,k):L_(1)([0,1])rarrRA_{m, k}: L_{1}([0,1]) \rightarrow \mathbb{R}Am,k:L1([0,1])R,
A m , k ( f ) = ( m + 1 ) 0 1 p m , k ( t ) f ( t ) d t , A m , k ( f ) = ( m + 1 ) 0 1 p m , k ( t ) f ( t ) d t , A_(m,k)(f)=(m+1)int_(0)^(1)p_(m,k)(t)f(t)dt,A_{m, k}(f)=(m+1) \int_{0}^{1} p_{m, k}(t) f(t) \mathrm{d} t,Am,k(f)=(m+1)01pm,k(t)f(t)dt,
for any k { 0 , 1 , , m } k { 0 , 1 , , m } k in{0,1,dots,m}k \in\{0,1, \ldots, m\}k{0,1,,m} and for any f L 1 ( [ 0 , 1 ] ) f L 1 ( [ 0 , 1 ] ) f inL_(1)([0,1])f \in L_{1}([0,1])fL1([0,1]). In this case, we obtain the Durrmeyer operators. With calculus, for m m mmm a nonzero natural number, we have
( T m , 0 M m ) ( x ) = 1 , ( T m , 1 M m ) ( x ) = m ( 1 2 x ) m + 2 , ( T m , 2 M m ) ( x ) = m 2 2 ( m 3 ) x ( 1 x ) + 2 ( m + 2 ) ( m + 3 ) T m , 0 M m ( x ) = 1 , T m , 1 M m ( x ) = m ( 1 2 x ) m + 2 , T m , 2 M m ( x ) = m 2 2 ( m 3 ) x ( 1 x ) + 2 ( m + 2 ) ( m + 3 ) {:[(T_(m,0)^(**)M_(m))(x)=1","],[(T_(m,1)^(**)M_(m))(x)=(m(1-2x))/(m+2)","],[(T_(m,2)^(**)M_(m))(x)=m^(2)(2(m-3)x(1-x)+2)/((m+2)(m+3))]:}\begin{aligned} & \left(T_{m, 0}^{*} M_{m}\right)(x)=1, \\ & \left(T_{m, 1}^{*} M_{m}\right)(x)=\frac{m(1-2 x)}{m+2}, \\ & \left(T_{m, 2}^{*} M_{m}\right)(x)=m^{2} \frac{2(m-3) x(1-x)+2}{(m+2)(m+3)} \end{aligned}(Tm,0Mm)(x)=1,(Tm,1Mm)(x)=m(12x)m+2,(Tm,2Mm)(x)=m22(m3)x(1x)+2(m+2)(m+3)
and
( T m , 4 M m ) ( x ) = m 4 12 ( m 2 21 m + 10 ) [ x ( 1 x ) ] 2 + 12 ( 6 m 10 ) x ( 1 x ) + 24 ( m + 2 ) ( m + 3 ) ( m + 4 ) ( m + 5 ) T m , 4 M m ( x ) = m 4 12 m 2 21 m + 10 [ x ( 1 x ) ] 2 + 12 ( 6 m 10 ) x ( 1 x ) + 24 ( m + 2 ) ( m + 3 ) ( m + 4 ) ( m + 5 ) (T_(m,4)^(**)M_(m))(x)=m^(4)(12(m^(2)-21 m+10)[x(1-x)]^(2)+12(6m-10)x(1-x)+24)/((m+2)(m+3)(m+4)(m+5))\left(T_{m, 4}^{*} M_{m}\right)(x)=m^{4} \frac{12\left(m^{2}-21 m+10\right)[x(1-x)]^{2}+12(6 m-10) x(1-x)+24}{(m+2)(m+3)(m+4)(m+5)}(Tm,4Mm)(x)=m412(m221m+10)[x(1x)]2+12(6m10)x(1x)+24(m+2)(m+3)(m+4)(m+5)
for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1].
Then α 2 = 1 , α 4 = 2 α 2 = 1 , α 4 = 2 alpha_(2)=1,alpha_(4)=2\alpha_{2}=1, \alpha_{4}=2α2=1,α4=2,
(3.25) ( T m , 2 M m ) ( x ) m < 3 2 (3.25) T m , 2 M m ( x ) m < 3 2 {:(3.25)((T_(m,2)^(**)M_(m))(x))/(m) < (3)/(2):}\begin{equation*} \frac{\left(T_{m, 2}^{*} M_{m}\right)(x)}{m}<\frac{3}{2} \tag{3.25} \end{equation*}(3.25)(Tm,2Mm)(x)m<32
(3.26) ( T m , 4 M m ) ( x ) m 2 < 7 4 (3.26) T m , 4 M m ( x ) m 2 < 7 4 {:(3.26)((T_(m,4)^(**)M_(m))(x))/(m^(2)) < (7)/(4):}\begin{equation*} \frac{\left(T_{m, 4}^{*} M_{m}\right)(x)}{m^{2}}<\frac{7}{4} \tag{3.26} \end{equation*}(3.26)(Tm,4Mm)(x)m2<74
for any m N , m 3 m N , m 3 m inN,m >= 3m \in \mathbb{N}, m \geq 3mN,m3, any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] and
(3.27) lim m ( T m , 2 M m ) ( x ) m = 2 x ( 1 x ) (3.27) lim m T m , 2 M m ( x ) m = 2 x ( 1 x ) {:(3.27)lim_(m rarr oo)((T_(m,2)^(**)M_(m))(x))/(m)=2x(1-x):}\begin{equation*} \lim _{m \rightarrow \infty} \frac{\left(T_{m, 2}^{*} M_{m}\right)(x)}{m}=2 x(1-x) \tag{3.27} \end{equation*}(3.27)limm(Tm,2Mm)(x)m=2x(1x)
Then, according to Corollary 3.2, Theorem 1.3 takes place.
If m , i m , i m,im, im,i are natural numbers, let
(3.28) T ¯ m , i ( x ) = k = 0 m p m , k ( x ) 0 1 p m , k ( t ) ( x t ) i d t (3.28) T ¯ m , i ( x ) = k = 0 m p m , k ( x ) 0 1 p m , k ( t ) ( x t ) i d t {:(3.28) bar(T)_(m,i)(x)=sum_(k=0)^(m)p_(m,k)(x)int_(0)^(1)p_(m,k)(t)(x-t)^(i)dt:}\begin{equation*} \bar{T}_{m, i}(x)=\sum_{k=0}^{m} p_{m, k}(x) \int_{0}^{1} p_{m, k}(t)(x-t)^{i} \mathrm{~d} t \tag{3.28} \end{equation*}(3.28)T¯m,i(x)=k=0mpm,k(x)01pm,k(t)(xt)i dt
for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] (see [4]). Then ( T m , i M m ) ( x ) = m i ( M m ψ x i ) ( x ) T m , i M m ( x ) = m i M m ψ x i ( x ) (T_(m,i)^(**)M_(m))(x)=m^(i)(M_(m)psi_(x)^(i))(x)\left(T_{m, i}^{*} M_{m}\right)(x)=m^{i}\left(M_{m} \psi_{x}^{i}\right)(x)(Tm,iMm)(x)=mi(Mmψxi)(x), so
(3.29) ( T m , i M m ) ( x ) = ( 1 ) i m i ( m + 1 ) T ¯ m , i ( x ) (3.29) T m , i M m ( x ) = ( 1 ) i m i ( m + 1 ) T ¯ m , i ( x ) {:(3.29)(T_(m,i)^(**)M_(m))(x)=(-1)^(i)m^(i)(m+1) bar(T)_(m,i)(x):}\begin{equation*} \left(T_{m, i}^{*} M_{m}\right)(x)=(-1)^{i} m^{i}(m+1) \bar{T}_{m, i}(x) \tag{3.29} \end{equation*}(3.29)(Tm,iMm)(x)=(1)imi(m+1)T¯m,i(x)
for any m , i N m , i N m,i inNm, i \in \mathbb{N}m,iN and any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1].
In [4] the result contained in the following corollary can be found.
Corollary 3.7. For any natural number j j jjj, j j jjj even, there exists k j R k j R k_(j)inRk_{j} \in \mathbb{R}kjR so that
(3.30) m j 2 + 1 T ¯ m , j ( x ) k j (3.30) m j 2 + 1 T ¯ m , j ( x ) k j {:(3.30)m^((j)/(2)+1) bar(T)_(m,j)(x) <= k_(j):}\begin{equation*} m^{\frac{j}{2}+1} \bar{T}_{m, j}(x) \leq k_{j} \tag{3.30} \end{equation*}(3.30)mj2+1T¯m,j(x)kj
for any m N m N m inNm \in \mathbb{N}mN, for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] and
(3.31) lim m m j 2 + 1 T ¯ m , j ( x ) = j ! ( j 2 ) ! [ x ( 1 x ) ] j 2 (3.31) lim m m j 2 + 1 T ¯ m , j ( x ) = j ! j 2 ! [ x ( 1 x ) ] j 2 {:(3.31)lim_(m rarr oo)m^((j)/(2)+1) bar(T)_(m,j)(x)=(j!)/(((j)/(2))!)[x(1-x)]^((j)/(2)):}\begin{equation*} \lim _{m \rightarrow \infty} m^{\frac{j}{2}+1} \bar{T}_{m, j}(x)=\frac{j!}{\left(\frac{j}{2}\right)!}[x(1-x)]^{\frac{j}{2}} \tag{3.31} \end{equation*}(3.31)limmmj2+1T¯m,j(x)=j!(j2)![x(1x)]j2
From 3.29-3.31, there exists k j k j k_(j)^(')ink_{j}^{\prime} \inkj so that
(3.32) ( T m , j M m ) ( x ) m j 2 k j (3.32) T m , j M m ( x ) m j 2 k j {:(3.32)((T_(m,j)^(**)M_(m))(x))/(m^((j)/(2))) <= k_(j)^('):}\begin{equation*} \frac{\left(T_{m, j}^{*} M_{m}\right)(x)}{m^{\frac{j}{2}}} \leq k_{j}^{\prime} \tag{3.32} \end{equation*}(3.32)(Tm,jMm)(x)mj2kj
for any m m m inm \inm, for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1], where j { s , s + 2 } j { s , s + 2 } j in{s,s+2}j \in\{s, s+2\}j{s,s+2} and
(3.33) lim m ( T m , s M m ) ( x ) m s 2 = s ! ( s 2 ) ! [ x ( 1 x ) ] s 2 (3.33) lim m T m , s M m ( x ) m s 2 = s ! s 2 ! [ x ( 1 x ) ] s 2 {:(3.33)lim_(m rarr oo)((T_(m,s)^(**)M_(m))(x))/(m^((s)/(2)))=(s!)/(((s)/(2))!)[x(1-x)]^((s)/(2)):}\begin{equation*} \lim _{m \rightarrow \infty} \frac{\left(T_{m, s}^{*} M_{m}\right)(x)}{m^{\frac{s}{2}}}=\frac{s!}{\left(\frac{s}{2}\right)!}[x(1-x)]^{\frac{s}{2}} \tag{3.33} \end{equation*}(3.33)limm(Tm,sMm)(x)ms2=s!(s2)![x(1x)]s2
According to the Corollary 3.2, we have:
Theorem 3.8. Let f : [ 0 , 1 ] R f : [ 0 , 1 ] R f:[0,1]rarrRf:[0,1] \rightarrow \mathbb{R}f:[0,1]R be a function. If x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1], f f fff is s times derivable at x x xxx and the function f ( s ) f ( s ) f^((s))f^{(s)}f(s) is continuous at x x xxx, then
(3.34) lim m ( M m f ) ( x ) = f ( x ) (3.34) lim m M m f ( x ) = f ( x ) {:(3.34)lim_(m rarr oo)(M_(m)f)(x)=f(x):}\begin{equation*} \lim _{m \rightarrow \infty}\left(M_{m} f\right)(x)=f(x) \tag{3.34} \end{equation*}(3.34)limm(Mmf)(x)=f(x)
if s = 0 s = 0 s=0s=0s=0,
(3.35) lim m m s 2 [ ( M m f ) ( x ) i = 0 s f ( i ) ( x ) m i i ! ( T m , i M m ) ( x ) ] = 0 (3.35) lim m m s 2 M m f ( x ) i = 0 s f ( i ) ( x ) m i i ! T m , i M m ( x ) = 0 {:(3.35)lim_(m rarr oo)m^((s)/(2))[(M_(m)f)(x)-sum_(i=0)^(s)(f^((i))(x))/(m^(i)i!)(T_(m,i)^(**)M_(m))(x)]=0:}\begin{equation*} \lim _{m \rightarrow \infty} m^{\frac{s}{2}}\left[\left(M_{m} f\right)(x)-\sum_{i=0}^{s} \frac{f^{(i)}(x)}{m^{i} i!}\left(T_{m, i}^{*} M_{m}\right)(x)\right]=0 \tag{3.35} \end{equation*}(3.35)limmms2[(Mmf)(x)i=0sf(i)(x)mii!(Tm,iMm)(x)]=0
if s s sss is a natural number and
(3.36) lim m m s 2 [ ( M m f ) ( x ) i = 0 s 1 f ( i ) ( x ) m i i ! ( T m , i M m ) ( x ) ] = f ( s ) ( x ) ( s 2 ) ! [ x ( 1 x ) ] s 2 (3.36) lim m m s 2 M m f ( x ) i = 0 s 1 f ( i ) ( x ) m i i ! T m , i M m ( x ) = f ( s ) ( x ) s 2 ! [ x ( 1 x ) ] s 2 {:(3.36)lim_(m rarr oo)m^((s)/(2))[(M_(m)f)(x)-sum_(i=0)^(s-1)(f^((i))(x))/(m^(i)i!)(T_(m,i)^(**)M_(m))(x)]=(f^((s))(x))/(((s)/(2))!)[x(1-x)]^((s)/(2)):}\begin{equation*} \lim _{m \rightarrow \infty} m^{\frac{s}{2}}\left[\left(M_{m} f\right)(x)-\sum_{i=0}^{s-1} \frac{f^{(i)}(x)}{m^{i} i!}\left(T_{m, i}^{*} M_{m}\right)(x)\right]=\frac{f^{(s)}(x)}{\left(\frac{s}{2}\right)!}[x(1-x)]^{\frac{s}{2}} \tag{3.36} \end{equation*}(3.36)limmms2[(Mmf)(x)i=0s1f(i)(x)mii!(Tm,iMm)(x)]=f(s)(x)(s2)![x(1x)]s2
if s 2 s 2 s >= 2s \geq 2s2.
If f f fff is a s s sss times derivable function on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1] and the function f ( s ) f ( s ) f^((s))f^{(s)}f(s) is continuous on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1], then the convergence from (3.34) - 3.36 are uniform on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1].
Application 3.9. We consider a = a = 0 , b = b = 1 a = a = 0 , b = b = 1 a=a^(')=0,b=b^(')=1a=a^{\prime}=0, b=b^{\prime}=1a=a=0,b=b=1. For any nonzero natural number m m mmm, let the functionals A m , k : L 1 ( [ 0 , 1 ] ) R A m , k : L 1 ( [ 0 , 1 ] ) R A_(m,k):L_(1)([0,1])rarrRA_{m, k}: L_{1}([0,1]) \rightarrow \mathbb{R}Am,k:L1([0,1])R,
A m , k ( f ) = ( m + 1 ) k m + 1 k + 1 m + 1 f ( t ) d t A m , k ( f ) = ( m + 1 ) k m + 1 k + 1 m + 1 f ( t ) d t A_(m,k)(f)=(m+1)int_((k)/(m+1))^((k+1)/(m+1))f(t)dtA_{m, k}(f)=(m+1) \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t) \mathrm{d} tAm,k(f)=(m+1)km+1k+1m+1f(t)dt
for any k { 0 , 1 , , m } k { 0 , 1 , , m } k in{0,1,dots,m}k \in\{0,1, \ldots, m\}k{0,1,,m} and for any f L 1 ( [ 0 , 1 ] ) f L 1 ( [ 0 , 1 ] ) f inL_(1)([0,1])f \in L_{1}([0,1])fL1([0,1]). In this case, we obtain the Kantorovich operators. If i i iii is a natural number and x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1], then
A m , k ( ψ x i ) = ( m + 1 ) k m + 1 k + 1 m + 1 ( t x ) i d t = m + 1 i + 1 [ ( k + 1 m + 1 x ) i + 1 ( k m + 1 x ) i + 1 ] = 1 ( i + 1 ) ( m + 1 ) i { [ ( k m x ) + ( 1 x ) ] i + 1 [ ( k m x ) + ( x ) i + 1 } A m , k ψ x i = ( m + 1 ) k m + 1 k + 1 m + 1 ( t x ) i d t = m + 1 i + 1 k + 1 m + 1 x i + 1 k m + 1 x i + 1 = 1 ( i + 1 ) ( m + 1 ) i [ ( k m x ) + ( 1 x ) ] i + 1 ( k m x ) + ( x ) i + 1 {:[A_(m,k)(psi_(x)^(i))=(m+1)int_((k)/(m+1))^((k+1)/(m+1))(t-x)^(i)dt],[=(m+1)/(i+1)[((k+1)/(m+1)-x)^(i+1)-((k)/(m+1)-x)^(i+1)]],[=(1)/((i+1)(m+1)^(i)){[(k-mx)+(1-x)]^(i+1)-[(k-mx)+(-x)^(i+1)}:}]:}\begin{aligned} A_{m, k}\left(\psi_{x}^{i}\right) & =(m+1) \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}}(t-x)^{i} \mathrm{~d} t \\ & =\frac{m+1}{i+1}\left[\left(\frac{k+1}{m+1}-x\right)^{i+1}-\left(\frac{k}{m+1}-x\right)^{i+1}\right] \\ & =\frac{1}{(i+1)(m+1)^{i}}\left\{[(k-m x)+(1-x)]^{i+1}-\left[(k-m x)+(-x)^{i+1}\right\}\right. \end{aligned}Am,k(ψxi)=(m+1)km+1k+1m+1(tx)i dt=m+1i+1[(k+1m+1x)i+1(km+1x)i+1]=1(i+1)(m+1)i{[(kmx)+(1x)]i+1[(kmx)+(x)i+1}
wherefrom
( T m , i K m ) ( x ) = = ( m m + 1 ) i 1 i + 1 k = 0 m p m , k ( x ) j = 0 i + 1 ( i + 1 j ) ( k m x ) j [ ( 1 x ) i + 1 j ( x ) i + 1 j ] T m , i K m ( x ) = = m m + 1 i 1 i + 1 k = 0 m p m , k ( x ) j = 0 i + 1 ( i + 1 j ) ( k m x ) j ( 1 x ) i + 1 j ( x ) i + 1 j {:[(T_(m,i)^(**)K_(m))(x)=],[=((m)/(m+1))^(i)(1)/(i+1)sum_(k=0)^(m)p_(m,k)(x)sum_(j=0)^(i+1)((i+1)/(j))(k-mx)^(j)[(1-x)^(i+1-j)-(-x)^(i+1-j)]]:}\begin{aligned} & \left(T_{m, i}^{*} K_{m}\right)(x)= \\ & =\left(\frac{m}{m+1}\right)^{i} \frac{1}{i+1} \sum_{k=0}^{m} p_{m, k}(x) \sum_{j=0}^{i+1}\binom{i+1}{j}(k-m x)^{j}\left[(1-x)^{i+1-j}-(-x)^{i+1-j}\right] \end{aligned}(Tm,iKm)(x)==(mm+1)i1i+1k=0mpm,k(x)j=0i+1(i+1j)(kmx)j[(1x)i+1j(x)i+1j]
so
(3.37) ( T m , i K m ) ( x ) = ( m m + 1 ) i 1 i + 1 j = 0 i + 1 ( i + 1 j ) T m , j ( x ) [ ( 1 x ) i + 1 j ( x ) i + 1 j ] (3.37) T m , i K m ( x ) = m m + 1 i 1 i + 1 j = 0 i + 1 ( i + 1 j ) T m , j ( x ) ( 1 x ) i + 1 j ( x ) i + 1 j {:(3.37)(T_(m,i)^(**)K_(m))(x)=((m)/(m+1))^(i)(1)/(i+1)sum_(j=0)^(i+1)((i+1)/(j))T_(m,j)(x)[(1-x)^(i+1-j)-(-x)^(i+1-j)]:}\begin{equation*} \left(T_{m, i}^{*} K_{m}\right)(x)=\left(\frac{m}{m+1}\right)^{i} \frac{1}{i+1} \sum_{j=0}^{i+1}\binom{i+1}{j} T_{m, j}(x)\left[(1-x)^{i+1-j}-(-x)^{i+1-j}\right] \tag{3.37} \end{equation*}(3.37)(Tm,iKm)(x)=(mm+1)i1i+1j=0i+1(i+1j)Tm,j(x)[(1x)i+1j(x)i+1j]
Then
( T m , 0 K m ) ( x ) = 1 , ( T m , 1 K m ) ( x ) = m 2 ( m + 1 ) ( 1 2 x ) , ( T m , 2 K m ) ( x ) = ( m m + 1 ) 2 ( 1 x ) 3 + x 3 + 3 m x ( 1 x ) 3 T m , 0 K m ( x ) = 1 , T m , 1 K m ( x ) = m 2 ( m + 1 ) ( 1 2 x ) , T m , 2 K m ( x ) = m m + 1 2 ( 1 x ) 3 + x 3 + 3 m x ( 1 x ) 3 {:[(T_(m,0)^(**)K_(m))(x)=1","],[(T_(m,1)^(**)K_(m))(x)=(m)/(2(m+1))(1-2x)","],[(T_(m,2)^(**)K_(m))(x)=((m)/(m+1))^(2)((1-x)^(3)+x^(3)+3mx(1-x))/(3)]:}\begin{aligned} \left(T_{m, 0}^{*} K_{m}\right)(x) & =1, \\ \left(T_{m, 1}^{*} K_{m}\right)(x) & =\frac{m}{2(m+1)}(1-2 x), \\ \left(T_{m, 2}^{*} K_{m}\right)(x) & =\left(\frac{m}{m+1}\right)^{2} \frac{(1-x)^{3}+x^{3}+3 m x(1-x)}{3} \end{aligned}(Tm,0Km)(x)=1,(Tm,1Km)(x)=m2(m+1)(12x),(Tm,2Km)(x)=(mm+1)2(1x)3+x3+3mx(1x)3
and taking into account that ( 1 x ) i + 1 j ( x ) i + 1 j < 2 ( 1 x ) i + 1 j ( x ) i + 1 j < 2 (1-x)^(i+1-j)-(-x)^(i+1-j) < 2(1-x)^{i+1-j}-(-x)^{i+1-j}<2(1x)i+1j(x)i+1j<2 for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1], α 2 = 1 α 2 = 1 alpha_(2)=1\alpha_{2}=1α2=1 and α 4 = 2 α 4 = 2 alpha_(4)=2\alpha_{4}=2α4=2, we have
(3.38) ( T m , 2 K m ) ( x ) m < 1 , (3.38) T m , 2 K m ( x ) m < 1 , {:(3.38)((T_(m,2)^(**)K_(m))(x))/(m) < 1",":}\begin{equation*} \frac{\left(T_{m, 2}^{*} K_{m}\right)(x)}{m}<1, \tag{3.38} \end{equation*}(3.38)(Tm,2Km)(x)m<1,
(3.39) ( T m , 4 K m ) ( x ) m 2 < 3 2 (3.39) T m , 4 K m ( x ) m 2 < 3 2 {:(3.39)((T_(m,4)^(**)K_(m))(x))/(m^(2)) < (3)/(2):}\begin{equation*} \frac{\left(T_{m, 4}^{*} K_{m}\right)(x)}{m^{2}}<\frac{3}{2} \tag{3.39} \end{equation*}(3.39)(Tm,4Km)(x)m2<32
for any m N , m 3 m N , m 3 m inN,m >= 3m \in \mathbb{N}, m \geq 3mN,m3 and for any x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1].
According to the Corollary 3.2, we have:
Theorem 3.10. Let f L 1 ( [ 0 , 1 ] ) f L 1 ( [ 0 , 1 ] ) f inL_(1)([0,1])f \in L_{1}([0,1])fL1([0,1]), bounded on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1]. If f f fff is a two times derivable function at the point x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] and the function f f f^('')f^{\prime \prime}f is continuous at x x xxx, then
(3.40) lim m m [ ( K m f ) ( x ) f ( x ) ] = 1 2 [ x ( 1 x ) f ( x ) ] . (3.40) lim m m K m f ( x ) f ( x ) = 1 2 x ( 1 x ) f ( x ) . {:(3.40)lim_(m rarr oo)m[(K_(m)f)(x)-f(x)]=(1)/(2)[x(1-x)f^(')(x)]^(').:}\begin{equation*} \lim _{m \rightarrow \infty} m\left[\left(K_{m} f\right)(x)-f(x)\right]=\frac{1}{2}\left[x(1-x) f^{\prime}(x)\right]^{\prime} . \tag{3.40} \end{equation*}(3.40)limmm[(Kmf)(x)f(x)]=12[x(1x)f(x)].
If f f fff is a two times derivable function on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1] and the function f f f^('')f^{\prime \prime}f is continuous on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1], then the convergence from (3.40) is uniform on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1].
Application 3.11. We consider a = a = 0 , b = b = 1 , 0 α β a = a = 0 , b = b = 1 , 0 α β a=a^(')=0,b=b^(')=1,0 <= alpha <= betaa=a^{\prime}=0, b=b^{\prime}=1,0 \leq \alpha \leq \betaa=a=0,b=b=1,0αβ. For any nonzero natural number m m mmm, let the functionals A m , k : [ 0 , 1 ] R A m , k : [ 0 , 1 ] R A_(m,k):[0,1]rarrRA_{m, k}:[0,1] \rightarrow \mathbb{R}Am,k:[0,1]R, A m , k ( f ) = f ( k + α m + β ) A m , k ( f ) = f k + α m + β A_(m,k)(f)=f((k+alpha)/(m+beta))A_{m, k}(f)=f\left(\frac{k+\alpha}{m+\beta}\right)Am,k(f)=f(k+αm+β), for any k { 0 , 1 , , m } k { 0 , 1 , , m } k in{0,1,dots,m}k \in\{0,1, \ldots, m\}k{0,1,,m} and for any f C ( [ 0 , 1 ] ) f C ( [ 0 , 1 ] ) f in C([0,1])f \in C([0,1])fC([0,1]). In this case, we obtain the Stancu operators. With calculus, the conditions in Corollary 3.2 are verified and we have:
Theorem 3.12. Let f C ( [ 0 , 1 ] ) f C ( [ 0 , 1 ] ) f in C([0,1])f \in C([0,1])fC([0,1]). If f f fff is a two times derivable function at the point x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] and the function f f f^('')f^{\prime \prime}f is continuous at x x xxx, then
(3.41) lim m m [ ( P m ( α , β ) f ) ( x ) f ( x ) ] = ( α β x ) f ( x ) + f ( x ) 2 x ( 1 x ) . (3.41) lim m m P m ( α , β ) f ( x ) f ( x ) = ( α β x ) f ( x ) + f ( x ) 2 x ( 1 x ) . {:(3.41)lim_(m rarr oo)m[(P_(m)^((alpha,beta))f)(x)-f(x)]=(alpha-beta x)f^(')(x)+(f^('')(x))/(2)x(1-x).:}\begin{equation*} \lim _{m \rightarrow \infty} m\left[\left(P_{m}^{(\alpha, \beta)} f\right)(x)-f(x)\right]=(\alpha-\beta x) f^{\prime}(x)+\frac{f^{\prime \prime}(x)}{2} x(1-x) . \tag{3.41} \end{equation*}(3.41)limmm[(Pm(α,β)f)(x)f(x)]=(αβx)f(x)+f(x)2x(1x).
If f f fff is a two times derivable function on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1] and the function f f f^('')f^{\prime \prime}f is continuous on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1], then the convergence from (3.41) is uniform on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1].
Application 3.13. Let p p ppp be a natural number, m m mmm be a nonzero natural number, a = 0 , b = 1 + p , a = 0 , b = 1 a = 0 , b = 1 + p , a = 0 , b = 1 a=0,b=1+p,a^(')=0,b^(')=1a=0, b=1+p, a^{\prime}=0, b^{\prime}=1a=0,b=1+p,a=0,b=1 and the functional A m + p , k ( f ) = f ( k m ) A m + p , k ( f ) = f k m A_(m+p,k)(f)=f((k)/(m))A_{m+p, k}(f)=f\left(\frac{k}{m}\right)Am+p,k(f)=f(km), for any k { 0 , 1 , , m + p } k { 0 , 1 , , m + p } k in{0,1,dots,m+p}k \in\{0,1, \ldots, m+p\}k{0,1,,m+p} and for any f C ( [ 0 , 1 + p ] ) f C ( [ 0 , 1 + p ] ) f in C([0,1+p])f \in C([0,1+p])fC([0,1+p]). In this case, we obtain the Schurer operators (see (1.4) and (1.5)). With calculus, the conditions of Corollary 3.2 are verified and we have:
Theorem 3.14. Let p p ppp be a natural number and f C ( [ 0 , 1 + p ] ) f C ( [ 0 , 1 + p ] ) f in C([0,1+p])f \in C([0,1+p])fC([0,1+p]). If f f fff is a two time derivable function at the point x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1] and the function f f f^('')f^{\prime \prime}f is continuous at x x xxx, then
(3.42) lim m ( m + p ) [ ( B ~ m , p f ) ( x ) f ( x ) ] = p x f ( x ) + x ( 1 x ) 2 f ( x ) . (3.42) lim m ( m + p ) B ~ m , p f ( x ) f ( x ) = p x f ( x ) + x ( 1 x ) 2 f ( x ) . {:(3.42)lim_(m rarr oo)(m+p)[( tilde(B)_(m,p)f)(x)-f(x)]=pxf^(')(x)+(x(1-x))/(2)f^('')(x).:}\begin{equation*} \lim _{m \rightarrow \infty}(m+p)\left[\left(\tilde{B}_{m, p} f\right)(x)-f(x)\right]=p x f^{\prime}(x)+\frac{x(1-x)}{2} f^{\prime \prime}(x) . \tag{3.42} \end{equation*}(3.42)limm(m+p)[(B~m,pf)(x)f(x)]=pxf(x)+x(1x)2f(x).
If f f fff is a two times derivable function on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1] and the function f f f^('')f^{\prime \prime}f is continuous on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1], then the convergence from (3.42) is uniform on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1].

REFERENCES

[1] Agratini, O., Aproximare prin operatori liniari, Presa Universitară Clujeană, ClujNapoca, 2000.
[2] Bărbosu, D., Voronovskaja Theorem for Bernstein-Schurer operators, Bul. Şt. Univ. Baia Mare, Ser. B, Matematică-Informatică, XVIII, nr. 2, pp. 37-140, 2002.
[3] Bărbosu, D. and Bărbosu, M., Some properties of the fundamental polynomials of Bernstein-Schurer, Bul. Şt. Univ. Baia Mare, Ser. B, Matematică-Informatică, XVIII, nr. 2, pp. 133-136, 2002.
[4] Derriennic, M. M., Sur l'approximation de finctions intégrables sur [ 0,1 ] par des polynômes de Bernstein modifiés, J. Approx. Theory, 31, pp. 325-343, 1981.
[5] Durrmeyer, J. L., Une formule d'inversion de la transformeé de Laplace: Applications à la théorie des moments, Thèse de 3 e 3 e 3e3 e3e cycle, Faculté des Sciences de l'Université de Paris, 1967.
[6] Lorentz, G. G., Bernstein polynomials, University of Toronto Press, Toronto, 1953.
[7] Lorentz, G. G., Aproximation of functions, Holt, Rinehart and Winston, New York, 1966.
[8] Pop, O. T., About a class of linear and positive operators (to appear in Proced. of ICAM4).
[9] Schurer, F., Linear positive operators in approximation theory, Math. Inst. Techn., Univ. Delft. Report, 1962.
[10] Stancu, D. D., Coman, Gh., Agratini, O., and Trîmbiţaş, R., Analiză numerică şi teoria aproximării, I, Presa Universitară Clujeană, Cluj-Napoca, 2001.
[11] Stancu, D. D., Curs şi culegere de probleme de analiză numerică, I, Univ. "BabeşBolyai" Cluj-Napoca, Facultatea de Matematică, Cluj-Napoca, 1977.
[12] Stancu, D. D., Asupra unei generalizări a polinoamelor lui Bernstein, Studia Univ. Babeş-Bolyai, Ser. Math.-Phys., 14, pp. 31-45, 1969.
[13] Voronovskaja, E., Détermination de la forme asymtotique d'approximation des functions par les polynômes de M. Bernstein, C. R. Acad. Sci. URSS, pp. 79-85, 1932.
Received by the editors: January 17, 2005.

  1. *National College "Mihai Eminescu", 5 Mihai Eminescu Street, Satu Mare, Romania, e-mail: ovidiutiberiu@yahoo.com.