A Voronovskaya type theorem for q-Szász-Mirakyan-Kantorovich operators
DOI:
https://doi.org/10.33993/jnaat401-947Keywords:
\(q\)-Szász-Mirakyan-Kantorovich operator, Riemann type \(q\)-integral, Voronovskaya type theoremAbstract
In this work, we consider a Kantorovich type generalization of \(q\)-Szász-Mirakyan operators via Riemann type \(q\)-integral and prove a Voronovskaya type theorem by using suitable machinery of \(q\)-calculus.Downloads
References
Andrews, G.E., Askey, R. and Roy, R., Special Functions, Cambridge University Press, 1999. DOI: https://doi.org/10.1017/CBO9781107325937
Aral, A. and Gupta, V., The q-derivative and application to q-Szász-Mirakyan operators, Calcolo, 43 (3), pp. 151-170, 2006. https://doi.org/10.1007/s10092-006-0119-3 DOI: https://doi.org/10.1007/s10092-006-0119-3
Aral, A. and Doğru, O., Bleimann, Butzer and Hahn operators based on the q-integers, J. Inequal. Appl., Art. ID 79410, 12pp, 2007 DOI: https://doi.org/10.1155/2007/79410
Aral, A., A generalization of Szász-Mirakyan operators based on q-integers, Math. Comput. Modelling., 47, pp. 1052-1062, 2008. https://doi.org/10.1016/j.mcm.2007.06.018 DOI: https://doi.org/10.1016/j.mcm.2007.06.018
Butzer, P.L., On the extensions of Bernstein polynomials to the infinite interval, Proc. Amer. Soc., 5, pp. 547-553, 1954 https://doi.org/10.1090/s0002-9939-1954-0063483-7. DOI: https://doi.org/10.1090/S0002-9939-1954-0063483-7
Dalmanoğlu, Ö. and Doğru, O., Statistical approximation properties of Kantorovich type q-MKZ operators, Creat. Math. Inform., 19 (1), pp. 15-24, 2010.
Duman, O., Özarslan, M.A. and Della Vecchia, B., Modified q-Szász-Mirakjan-Kantorovich operators preserving linear functions, Turkish J. Math., 33 (2), pp. 151-158, 2009. DOI: https://doi.org/10.3906/mat-0801-2
Gupta, V., Vasishtha, V. and Gupta, M.K., Rate of convergence of the Szasz-Kantorovich-Bezier operators for bounded variation functions, Publ. Inst. Math. (Beograd) (N.S), 72 (86), pp. 137-143, 2002. DOI: https://doi.org/10.2298/PIM0272137G
Gupta, V. and Zeng, Xiao-Ming, Approximation by Bézier variant of the Szász-Kantorovich operators in case α<1, Georgian Math. J., 17(2), pp. 253-260, 2010. DOI: https://doi.org/10.1515/gmj.2010.017
Kac, V.G. and Cheung, P., Quantum Calculus, Universitext, Springer-Verlag, New York, 2002. DOI: https://doi.org/10.1007/978-1-4613-0071-7
Karslı, H. and Gupta, V., Some approximation properties of q-Chlodowsky operators, Appl. Math. Comput., 195, pp. 220-229, 2008. https://doi.org/10.1016/j.amc.2007.04.085 DOI: https://doi.org/10.1016/j.amc.2007.04.085
Mahmudov, N.I., On q-parametric Szász-Mirakjan operators, Mediterr. J. Math., 7(3), pp. 297-311, 2010. https://doi.org/10.1007/s00009-010-0037-0 DOI: https://doi.org/10.1007/s00009-010-0037-0
Mahmudov, N.I. and Gupta, V., On certain q-analogue of Szász Kantorovich operators, Journal of Applied Mathematics and Computing, October 2011, Volume 37, Issue 1-2, pp 407–419 https://doi.org/10.1007/s12190-010-0441-4. DOI: https://doi.org/10.1007/s12190-010-0441-4
Marinković, S., Rajković, P. and Stanković, M., The inequalities for some types of q-integrals, Comput. Math. Appl., 56, pp. 2490-2498, 2008. https://doi.org/10.1016/j.camwa.2008.05.035 DOI: https://doi.org/10.1016/j.camwa.2008.05.035
Nowak, G. and Sikorska-Nowak, A., Some approximation properties for modified Szasz-Mirakyan-Kantorovich operators, Rev. Anal. Numér. Théor. Approx., 38(1), pp. 73-82, 2009, http://ictp.acad.ro/jnaat/journal/article/view/2009-vol38-no1-art7
Phillips, G.M., Bernstein polynomials based on the q-integers, Annals of Num. Math., 4, pp. 511-518, 1997.
Sikkema, P.C., On some linear positive operators, Indag. Math., 32, pp. 327-337, 1970. https://doi.org/10.1016/s1385-7258(70)80037-3 DOI: https://doi.org/10.1016/S1385-7258(70)80037-3
Stypinski, Z., Theorem of Voronovskaya for Szász-Chlodovsky operators, Funct. Approximatio Comment. Math., 1, pp 133-137, 1974.
Totik, V., Approximation by Szasz-Mirakjan-Kantorovich operators in L^{p}(p>1), Annal. Math., 9(2), pp. 147-167, 1983. https://doi.org/10.1007/bf01982010 DOI: https://doi.org/10.1007/BF01982010
Trif, T., Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Numér. Théory Approx., 29(2), pp. 221-229, 2000, http://ictp.acad.ro/jnaat/journal/article/view/2000-vol29-no2-art13
Wang, H., Properties of convergence for the q-Meyer-König and Zeller operators, J. Math. Anal. Appl., 335, pp. 1360-1373, 2007. https://doi.org/10.1016/j.jmaa.2007.01.103 DOI: https://doi.org/10.1016/j.jmaa.2007.01.103
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.