The generalization of some results for Schurer and Schurer-Stancu operators
DOI:
https://doi.org/10.33993/jnaat401-951Keywords:
Bernstein operators, Schurer operators, Schurer-Stancu operators, falling factorials, Pochhammer symbol, Stirling numbers of second kind, Voronovskaja type theorem, modulus of continuity, order of approximationAbstract
In the present paper we generalize some results for Schurer and Schurer-Stancu operators. Firstly, we establish a general formula concerning calculation of test functions by Schurer operators. Secondly, using this relationship and some known results we prove in every case a Voronovskaja type theorem, the uniform convergence and the order of approximation for Schurer and Schurer-Stancu operators.Downloads
References
Abel, U. and Ivan, M., Asymptotic expansion of the multivariate Bernstein polynomials on a simplex, Approx. Theory and Appl., 16, no. 3, pp. 85-93, 2000.
Agratini, O., Approximation by linear operators, Presa Universitară Clujeană, Cluj-Napoca, 2000 (in Romanian).
Altomare, F. and Campiti, M., Korovkin-type Approximation Theory and its Applications, de Gruyter Series Studies in Mathematics, Walter de Gruyter & Co. Berlin, 17, New York, 1994. DOI: https://doi.org/10.1515/9783110884586
Bărbosu, D. and Bărbosu, M., Some properties of the fundamental polynomials of Bernstein-Schurer operators, Buletin Şt. Univ. Baia Mare, XVIII, no. 2, pp. 133-136, 2002.
Bărbosu, D., Voronovskaja theorem for Bernstein-Schurer operators, Buletin Şt. Univ. Baia Mare, XVIII, no. 2, pp. 137-140, 2002.
Bărbosu, D., Simultaneous Approximation by Schurer-Stancu type operators, Math. Balkanica, 17, no. 3-4, pp. 365-374, 2003.
Bărbosu, D., Polynomial Approximation by Means of Schurer-Stancu type operators, Editura Univ. Nord, Baia Mare, 2006.
Bernstein, S. N., Démonstration du théorème de Weierstrass fonée sur le calcul de probabilités, Commun. Soc. Math. Kharkow, 13, no. 2, pp. 1-2, 1912-1913.
Gonska, H. H. and Meier, J., Quantitative theorems on approximation by Bernstein-Stancu operators, Calcolo, 21, pp. 317-335, 1984. https://doi.org/10.1007/bf02576170 DOI: https://doi.org/10.1007/BF02576170
Gonska, H. H., Piţul, P. and Raşa, I., On Peano's form of the Taylor remainder, Voronovskaja's theorem and the commutator of positive linear operators, In "Numerical Analysis and Approximation Theory" (Proc. Int. Conf. Cluj-Napoca 2006, ed. by O. Agratini and P. Blaga), Casa Cărţii de Ştiinţă, pp. 55-80, 2006.
Gonska, H. H., On the degree of approximation in Voronovskaja's theorem, Studia Univ. Babeş Bolyai, Math., LII (2007), no. 3, pp. 103-115.
Gonska, H. H. and Tachev, G., A quantitative variant of Voronovskaja's theorem, Results in Math., 53, pp. 287-294, 2009. https://doi.org/10.1007/s00025-008-0339-8 DOI: https://doi.org/10.1007/s00025-008-0339-8
Karlin, S. and Ziegler, Z., Iteration of positive approximation operators, J. Approx. Theory, 3, pp. 310-339, 1970. https://doi.org/10.1016/0021-9045(70)90055-9 DOI: https://doi.org/10.1016/0021-9045(70)90055-9
Miclăuş, D. and Braica, P. I., The generalization of some results for Bernstein and Stancu operators, Creat. Math. Inf., 20, no. 2, pp. 147-156, 2011. DOI: https://doi.org/10.37193/CMI.2011.02.10
Miclăuş, D. and Braica, P. I., Some results concerning calculation of the test functions by Bernstein type operators, Acta Univ. Apulensis, 28, pp. 135-142, 2011.
Pop, O. T. and Farcaş, M., About Bernstein polynomial and the Stirling's numbers of second type, Creative Math. & Inf., 14, pp. 53-56, 2005.
Pop, O. T., The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Num. Théor. Approx., 34, no. 1, pp. 79-91, 2005, http://ictp.acad.ro/jnaat/journal/article/view/2005-vol34-no1-art9
Pop, O. T., About a general property for a class of linear and positive operators and applications, Rev. Anal. Num. Theor. Approx., 34, no. 2, pp. 175-180, 2005, http://ictp.acad.ro/jnaat/journal/article/view/2005-vol34-no2-art6
Pop, O. T., Bărbosu, D. and Braica, P. I., Some results regarding the Bernstein polynomials, Acta Universitatis Apulensis, 22, pp. 243-247, 2010.
Schurer, F., Linear positive operators in approximation theory, Math. Inst. Techn., Univ. Delft Report, 1962.
Stirling, J., Differential Method: A Treatise of the Summation and Interpolation of Infinite Series, London, 1730, (in Latin).
Voronovskaja, E. V., Détérmination de la forme asymtotique d'approximation des fonctions par des polinômes de Bernstein, C. R. Acad. Sci. URSS, pp. 79-85, 1932.
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.