A separation of some Seiffert-type means by power means
DOI:
https://doi.org/10.33993/jnaat412-974Keywords:
Seiffert type means, power means, logarithmic mean, identric mean, inequalities of meansAbstract
Consider the identric mean \(\mathcal{I}\), the logarithmic mean \(\mathcal{L,}\) two trigonometric means defined by H. J. Seiffert and denoted by \(\mathcal{P}\) and \(\mathcal{T,}\) and the hyperbolic mean \(\mathcal{M}\) defined by E. Neuman and J. Sándor. There are a number of known inequalities between these means and some power means \(\mathcal{A}_{p}.\) We add to these inequalities some new results obtaining the following chain of inequalities\[\mathcal{A}_{0}<\mathcal{L}<\mathcal{A}_{1/3}<\mathcal{P<A}_{2/3}<\mathcal{I}<\mathcal{A}_{3/3}<\mathcal{M}<\mathcal{A}_{4/3}<\mathcal{T}<\mathcal{A}_{5/3}.\]Downloads
References
B.C. Carlson, The logarithmic mean, Amer. Math. Monthly, 79 (1972), pp. 615-618, https://doi.org/10.1080/00029890.1972.11993095 DOI: https://doi.org/10.1080/00029890.1972.11993095
I. Costin and G. Toader, A nice evaluation of some Seiffert type means by power means, Int. J. Math. Math. Sc., 2012, Article ID 430692, 6 pages, https://doi.org/10.1155/2012/430692 DOI: https://doi.org/10.1155/2012/430692
P.A. Hästö, Optimal inequalities between Seiffert's means and power means, Math. Inequal. Appl., 7 (2004) no. 1, pp. 47-53, https://doi.org/10.7153/mia-07-06 DOI: https://doi.org/10.7153/mia-07-06
A.A. Jagers, Solution of problem 887, Niew Arch. Wisk. (Ser. 4), 12 (1994), pp. 230-231, https://doi.org/10.1016/0734-9750(94)90846-x DOI: https://doi.org/10.1016/0734-9750(94)90846-X
T.P. Lin, The power and the logarithmic mean, Amer. Math. Monthly, 81 (1974), pp. 879-883, https://doi.org/10.1080/00029890.1974.11993684 DOI: https://doi.org/10.1080/00029890.1974.11993684
E. Neuman and J. Sándor, On the Schwab-Borchardt mean, Math. Panon., 14 (2003) no. 2, pp. 253-266.
E. Neuman and J. Sándor, Companion inequalities for certain bivariate means, Appl. Anal. Discrete Math., 3 (2009), pp. 46-51, https://doi.org/10.2298/aadm0901046n DOI: https://doi.org/10.2298/AADM0901046N
A.O. Pittenger, Inequalities between arithmetic and logarithmic means, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 678-715 (1980), pp. 15-18.
H.-J. Seiffert, Problem 887, Niew Arch. Wisk. (Ser. 4), 11 (1993), pp. 176-176. DOI: https://doi.org/10.1080/02640419308729981
H.-J. Seiffert, Aufgabe β16, Die Wurzel, 29 (1995), pp. 221-222.
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.