Simultaneous proximinality in \(L^{\infty}(\mu,X)\)
DOI:
https://doi.org/10.33993/jnaat422-984Keywords:
simultaneous approximation, Banach spacesAbstract
Let \(X\) be a Banach space and \(G\) be a closed subspace of \(X\). Let us denote by \(L^{\infty}\left( \mu,X\right) \) the Banach space of all \(X\)-valued essentially bounded functions on a \(\sigma\)-finite complete measure space \(\left( \Omega,\Sigma,\mu\right) .\) In this paper we show that if \(G\) is separable, then \(L^{\infty}\left( \mu,G\right) \) is simultaneously proximinal in \(L^{\infty}\left( \mu,X\right) \) if and only if \(G\) is simultaneously proximinal in \(X.\)Downloads
References
A.P. Bosznoy, A remark on simultaneous approximation, J. Approx. Theory, 28 (1978), pp. 296-298. DOI: https://doi.org/10.1016/0021-9045(78)90118-1
A.S. Holland, B.N. Sahney and J.Tzimbalario, On best simultaneous approximation, J. Indian Math. Soc., 40 (1976), pp. 69-73.
C. B. Dunham, Simultaneous Chebyshev approximation of functions on an interval, Proc. Amer. Math. Soc., 18 (1967), pp. 472-477, https://doi.org/10.1090/s0002-9939-1967-0212463-6 DOI: https://doi.org/10.1090/S0002-9939-1967-0212463-6
Chong Li, On best simultaneous approximation, J. Approx. Theory, 91 (1998), pp. 332-348. DOI: https://doi.org/10.1006/jath.1996.3102
E. Abu-Sirhan, Best simultaneous approximation in Lp(I,X), Inter. J. Math. Analysis, 3 (2009) no. 24, pp. 1157-1168.
E. Abu-Sirhan and R. Khalil, Best simultaneous approximation in L∞(I,X), Indian Journal of Mathematics, 51 (2009) no.2, pp. 391-400.
Eyad Abu-Sirhan, On simultaneous approximation in function spaces, Approximation Theory XIII: San Antonio 2010, Springer Proceedings in Mathematics, NY 10013, USA 2012. DOI: https://doi.org/10.3906/mat-0904-37
Eyad Abu-Sirhan, Best p-simultaneous approximaton in Lp(μ,X), Journal of Applied Functional Analysis, 7 (2012) no. 3, pp. 225-235.
Fathi B. Saidi, Deep Hussein and R. Khalil, Best simultaneous approximation in Lp(I,E), J. Approx. Theory, 116 (2002), pp. 369-379, https://doi.org/10.1006/jath.2002.3676 DOI: https://doi.org/10.1006/jath.2002.3676
G. A. Watson, A charaterization of best simultaneous approximation, J. Approx. Theory, 75 (1998), pp. 175-182, https://doi.org/10.1006/jath.1993.1097 DOI: https://doi.org/10.1006/jath.1993.1097
J. Mach, Best simultaneous approximation of bounded functions with values in certain Banach spaces, Math. Ann., 240 (1979), pp. 157-164, https://doi.org/10.1007/bf01364630 DOI: https://doi.org/10.1007/BF01364630
J. Diestel and J.R. Uhl, Vector Measures, Math. Surveys Monographs, vol.15, Amer. Math. Soc., Providence, RI, 1977. DOI: https://doi.org/10.1090/surv/015
J.B. Diaz and H.W. McLaughlin, On simultaneous Chebyshev approximation and Chebyshev approximation with an additive weight function, J. Approx. Theory, 6 (1972), pp. 68-71, https://doi.org/10.1016/0021-9045(72)90082-2 DOI: https://doi.org/10.1016/0021-9045(72)90082-2
J.B. Diaz and H.W. McLaughlin, Simultaneous approximation of a set of bounded real functions, Math. Comp., 23 (1969), pp. 583-593, https://doi.org/10.1090/s0025-5718-1969-0248481-1 DOI: https://doi.org/10.1090/S0025-5718-1969-0248481-1
J. Mendoza, Proximinality in L^{p}(μ,X), J. Approx. Theory, 93 (1998), pp. 331-343, https://doi.org/10.1006/jath.1997.3163 DOI: https://doi.org/10.1006/jath.1997.3163
J. Mendoza and Tijani Pakhrou, Best simultaneous approximation in L¹(μ,X), J. Approx. Theory, 145 (2007), pp. 212-220. DOI: https://doi.org/10.1016/j.jat.2006.09.003
K. Kuratowiski and C. Ryll-Nardzewski, A general therem on selector, Bull. Acad. Polonaise Science, Series Math. Astr. Phys., 13 (1965), pp. 379-403.
S. Tanimoto, On best simultaneous approximation, Math. Japonica, 48 (1998) no. 2, pp. 275-279.
T. Pakhrou, Best simultaneous approximation in L^{∞}(μ,X), Math. Nachrichten, 281 (2008) no. 3, pp. 396-401, https://doi.org/10.1002/mana.200510610 DOI: https://doi.org/10.1002/mana.200510610
W.A Light, Proximinality in L^{p}(I,X), J. Approx. Theory, 19(1989), pp. 251-259, https://doi.org/10.1216/rmj-1989-19-1-251 DOI: https://doi.org/10.1216/RMJ-1989-19-1-251
W.A Light and E.W. Cheney, Approximation Theory in Tensor Product Spaces, Lecture Notes in Mathematics, 1169, Spinger-Velag, Berlin, 1985. DOI: https://doi.org/10.1007/BFb0075391
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.