Return to Article Details Simultaneous proximinality in \(L^{\infty}(\mu,X)\)

Simultaneous Proximinality in \(L^{\infty }\left( \mu ,X\right) \)

Eyad Abu-Sirhan\(^{\ast }\)

October 21, 2013.

\(^{\ast }\)Department of Mathematics, Tafila Technical University, Tafila, Jordan, e-mail: abu-sirhan@ttu.edu.jo.

Let \(X\) be a Banach space and \(G\) be a closed subspace of \(X\). Let us denote by \(L^{\infty }\left( \mu ,X\right) \) the Banach space of all \(X\)-valued essentially bounded functions on a \(\sigma \)-finite complete measure space \(\left( \Omega ,\Sigma ,\mu \right) .\) In this paper we show that if \(G\) is separable, then \(L^{\infty }\left( \mu ,G\right) \) is simultaneously proximinal in \(L^{\infty }\left( \mu ,X\right) \) if and only if \(G\) is simultaneously proximinal in \(X.\)

MSC. 41A28

Keywords. Simultaneous approximation, Banach spaces

1 Introduction

Let \(Z\) be a Banach space and \(Y\) be a closed subspace of \(\ Z\). For a subset \(B\) of \(Z,\) define

\[ d\left( B,Y\right) =\underset {y\in Y}{\inf }\ \underset {b\in B}{\sup }\left\Vert b-y\right\Vert . \]

An element \(y^{\ast }\in Y\) is said to be a best simultaneous approximant to the subset \(B\) if

\[ \underset {b\in B}{\sup }\left\Vert b-y^{\ast }\right\Vert =d\left( B,Y\right) . \]

Definition 1.1

If every finite subset of \(Z\) admits a best simultaneous approximation in \(Y\), then \(Y\) is said to be simultaneously proximinal in \(Z.\)

The theory of best simultaneous approximation has been studied by many authors. Most of these works have dealt with the space of continuous functions with values in a Banach space e.g. [18, 10, 4]. Some recent results for best simultaneous approximation in the Banach space of \(P\)-Bochner integrable (essentially bounded) functions have been obtained in [5, 6, 9, 16, 19]. We consider here a problem of simultaneous approximation completing the work done in \(\left[ 6,19\right] \). In this paper \(\left( \Omega ,\Sigma ,\mu \right) \) stands for a complete \(\sigma \)-finite measure space and \(L^{\infty }\left( \mu ,X\right) \) the Banach space of all essentially bounded functions on \(\left( \Omega ,\Sigma ,\mu \right) \) with values in a Banach space \(X,\) endowed with the usual norm

\[ \left\Vert f\right\Vert _{\infty }=\operatorname {ess} \sup \left\Vert f\left( t\right) \right\Vert . \]

In [19], it is shown that if \(G\) is a reflexive subspace of a Banach space \(X \), then \(L^{\infty }\left( \mu ,G\right) \) is simultaneously proximinal in \(L^{\infty }\left( \mu ,X\right) .\) In [6], it is shown that if \(G\) is a separable \(w^{\ast }\)-closed subspace of a dual space \(X\), then \(L^{\infty }\left( \mu ,G\right) \) is simultaneously proximinal in \(L^{\infty }\left( \mu ,X\right) .\) The aim of this paper is to show that if \(G\) is a closed separable subspace of a Banach space \(X\), then \(L^{\infty }\left( \mu ,G\right) \) is simultaneously proximinal in \(L^{\infty }\left( \mu ,X\right) \) if and only if \(G\) is simultaneously proximinal in \(X.\)

2 Preliminary Results

The following Theorem is a generalization of the distance formula given in [6]. Here \(\chi _{A}\) is denoted to the characteristic function of \(A.\)

Theorem 2.1

Let \(X~ \)be a Banach space, \(G\) be a closed subspace of \(X\), and \(f_{1},f_{2},...,f_{m}\) be any finite number of elements in \(L^{\infty }\left( \mu ,X\right) .\) Then the function

\[ s\rightarrow d\left( \left\{ f_{i}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) , \]

which we denote by \(d\left( \left\{ f_{i}\left( \cdot \right) :1\leq i\leq m\right\} ,\ G\right) \), is measurable, and

\[ d\left( \left\{ f_{i}:1\leq i\leq m\right\} ,\ L^{\infty }\left( \mu ,G\right) \right) =\left\Vert d\left( \left\{ f_{i}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) \right\Vert _{\infty } \]

Proof â–¼
Let \(f_{1},f_{2},...,f_{m}\in L^{\infty }\left( \mu ,X\right) \). Being strongly measurable functions, there exist sequences of simple functions \((f_{\left( i,n\right) })_{n=1}^{\infty },\) \(i=1,2,...,m,\ \)such that
\[ \lim \left\Vert f_{\left( i,n\right) }\left( t\right) -f_{i}\left( t\right) \right\Vert =0,\ \]

for \(i=1,2,...,m,\) and for almost all \(t\)’s. We may write, [9],

\[ f_{\left( i,n\right) }=\sum _{j=1}^{k\left( n\right) }\chi _{A\left( n,j\right) }\left( \cdot \right) x_{\left( i,n,j\right) }\ ,\text{ \ \ }i=1,2,...,m,\text{ } \]

\(\ \) where \(A\left( n,j\right) \) are disjoint and \(\overset {k\left( n\right) }{\underset {j=1}{\cup }}A\left( n,j\right) =\Omega .\) Define \(d_{n}\left( \cdot \right) :\Omega \rightarrow \mathbb {R} \) by

\[ d_{n}\left( s\right) =d\left( \left\{ f_{\left( i,n\right) }\left( s\right) :1\leq i\leq m\right\} ,\ G\right) . \]

Then

\[ d_{n}\left( s\right) =\sum _{j=1}^{k\left( n\right) }\chi _{A\left( n,j\right) }d\left( \left\{ x_{\left( i,n,j\right) }:1\leq i\leq m\right\} ,\ G\right) \]

and

\[ \lim d_{n}\left( s\right) =d\left( \left\{ f_{i}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) , \]

for almost all \(s\). Thus \(d\left( \left\{ f_{i}\left( \cdot \right) :1\leq i\leq m\right\} ,\ G\right) \) is measurable.

Now, for any \(h\in L^{\infty }\left( \mu ,G\right) ,\)

\begin{align*} \operatorname {ess} \sup d\left( \left\{ f_{i}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) & \leq \operatorname {ess} \sup \ \underset {1\leq i\leq m}{\sup }\left\Vert f_{i}\left( s\right) -h\left( s\right) \right\Vert \\ & =\underset {1\leq i\leq m}{\sup }\left\Vert f_{i}-h\right\Vert _{\infty }\end{align*}

Hence

\[ \operatorname {ess} \sup d\left( \left\{ f_{i}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) \leq d\left( \left\{ f_{i}:1\leq i\leq m\right\} ,\ L^{\infty }\left( \mu ,G\right) \right) . \]

To prove the reverse inequality, let \(\epsilon {\gt}0\) be given and \(w_{i},\ i=1,2,...,m,\) be countably valued functions in \(L^{\infty }\left( \mu ,X\right) \) such that

\[ \left\Vert f_{i}-w_{i}\right\Vert _{\infty }{\lt}\tfrac {\epsilon }{3}.\ \ \]

We may write \(w_{i}=\sum _{k=1}^{\infty }\chi _{A_{k}}\left( \cdot \right) \ x_{\left( i,k\right) },\) where \(A_{k}\) are disjoint, \(\overset {\infty }{\underset {k=1}{\cup }}A_{k}=\Omega ,\) and \(\mu \left( A_{k}\right) {\gt}0\), for all \(k.\) Let \(h_{k}\in G\) be such that

\[ \underset {1\leq i\leq m}{\sup }\left\Vert x_{\left( i,k\right) }-h_{k}\right\Vert {\lt}d\left( \left\{ x_{\left( i,k\right) }:1\leq i\leq m\right\} ,\ G\right) +\tfrac {\epsilon }{3}, \]

for all \(k.\) Let \(g=\sum _{k=1}^{\infty }\chi _{A_{k}}\left( \cdot \right) h_{k}.\) It is clear that \(g\in L^{\infty }\left( \mu ,G\right) .\) Further

\begin{align*} & d\left( \left\{ f_{i}:1\leq i\leq m\right\} ,\ L^{\infty }\left( \mu ,G\right) \right) \leq \\ & \leq \underset {1\leq i\leq m}{\sup }\left\Vert f_{i}-w_{i}\right\Vert _{\infty }+d\left( \left\{ w_{i}:1\leq i\leq m\right\} ,\ L^{\infty }\left( \mu ,G\right) \right) \\ & \leq \tfrac {\epsilon }{3}+\underset {1\leq i\leq m}{\sup }\left\Vert g-w_{i}\right\Vert _{\infty }\\ & =\tfrac {\epsilon }{3}+\operatorname {ess} \sup \underset {1\leq i\leq m}{\sup }\left\Vert g\left( t\right) -w_{i}\left( t\right) \right\Vert \\ & =\tfrac {\epsilon }{3}+\operatorname {ess} \sup \underset {1\leq i\leq m}{\sup }\sum _{k=1}^{\infty }\chi _{A_{k}}\left( t\right) \left\Vert x_{\left( i,k\right) }-h_{k}\right\Vert \\ & =\tfrac {\epsilon }{3}+\operatorname {ess} \sup \sum _{k=1}^{\infty }\chi _{A_{k}}\left( t\right) \underset {1\leq i\leq m}{\sup }\left\Vert x_{\left( i,k\right) }-h_{k}\right\Vert \\ & {\lt}\tfrac {2\epsilon }{3}+\operatorname {ess} \sup \sum _{k=1}^{\infty }\chi _{A_{k}}\left( t\right) d\left( \left\{ x_{\left( i,k\right) }:1\leq i\leq m\right\} ,\ G\right) \\ & =\tfrac {2\epsilon }{3}+\operatorname {ess} \sup d\left( \left\{ w_{i}\left( t\right) :1\leq i\leq m\right\} ,\ G\right) \\ & \leq \tfrac {2\epsilon }{3}+\operatorname {ess} \sup \left[ d\left( \left\{ f_{i}\left( t\right) :1\leq i\leq m\right\} ,\ G\right) +\underset {1\leq i\leq m}{\sup }\left\Vert f_{i}\left( t\right) -w_{i}\left( t\right) \right\Vert \right] \\ & \leq \tfrac {2\epsilon }{3}+\operatorname {ess} \sup d\left( \left\{ f_{i}\left( t\right) :1\leq i\leq m\right\} ,\ G\right) +\underset {1\leq i\leq m}{\sup }\left\Vert f_{i}-w_{i}\right\Vert _{\infty }\\ & {\lt}\epsilon +\operatorname {ess} \sup d\left( \left\{ f_{i}\left( t\right) :1\leq i\leq m\right\} ,\ G\right) . \end{align*}

Corollary 2.2

Let \(X~ \)be a Banach space, \(G\) be a closed subspace of \(X\), and \(f_{1},f_{2},...,f_{m}\) be any finite number of elements in \(L^{\infty }\left( \mu ,X\right) .\) Let \(g:\Omega \rightarrow G\) be a measurable function such that \(g\left( s\right) \) is a best simultaneous approximation of \(f_{1}\left( s\right) ,f_{2}\left( s\right) ,...,f_{n}\left( s\right) \) for almost all \(s.\) Then \(g\) is a best simultaneous approximation of \(f_{1},f_{2},...,f_{n}\) in \(L^{\infty }\left( \mu ,G\right) \) (and therefore \(g\in L^{\infty }\left( \mu ,G\right) ).\)

Proof â–¼
Assume that\(\ g\left( s\right) \) is a best simultaneous approximation of
\(f_{1}\left( s\right) ,f_{2}\left( s\right) ,...,f_{m}\left( s\right) \) for almost all \(s.\) Then
\[ \underset {1\leq i\leq m}{\sup }\left\Vert f_{i}\left( s\right) -g\left( s\right) \right\Vert \leq \underset {1\leq i\leq m}{\sup }\left\Vert f_{i}\left( s\right) -z\right\Vert , \]

for almost all \(s\), and for all \(z\in G.\) Then

\[ \left\Vert g\left( s\right) \right\Vert \leq 2\underset {1\leq i\leq m}{\sup }\left\Vert f_{i}\left( s\right) \right\Vert \leq 2\underset {1\leq i\leq m}{\sup }\left\Vert f_{i}\right\Vert _{\infty }, \]

for almost all \(s,\) therefore \(g\in L^{\infty }\left( \mu ,G\right) .\) By Theorem 2.1,

\begin{align*} d\left( \left\{ f_{i}:1\leq i\leq m\right\} ,\ L^{\infty }\left( \mu ,G\right) \right) & =\operatorname {ess} \sup d\left( \left\{ f_{i}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) \\ & =\operatorname {ess} \sup \underset {1\leq i\leq m}{\sup }\left\Vert f_{i}\left( s\right) -g\left( s\right) \right\Vert \\ & =\underset {1\leq i\leq m}{\sup }\left\Vert f_{i}-g\right\Vert _{\infty }. \end{align*}

Therefore \(g\) is a best simultaneous approximation for \(f_{1},f_{2},..,f_{m}\) in
\(L^{\infty }\left( \mu ,G\right) .\)

The condition in Corollary 2.2 is sufficient; \(g\left( s\right) \) is a best simultaneous approximation of \(f_{1}\left( s\right) ,f_{2}\left( s\right) ,...,f_{m}\left( s\right) \) for almost all \(s\) in \(G,\) implies \(g\) is a best simultaneous approximation of \(f_{1},f_{2},...,f_{m}\) in \(L^{\infty }\left( \mu ,G\right) .\) For the converse, we need the following easy lemma.

Lemma 2.3

Let \(X~ \)be a Banach space, \(G\) be a closed subspace of \(X\), \(A\subset \Omega \) be such that \(\mu \left( A\right) {\gt}0,\) and \(f_{1},f_{2},...,f_{m}\) \(\in \) \(L^{\infty }\left( \mu ,X\right) \) be such that

\[ d\left( \left\{ f_{i}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) = \begin{cases} 1,& {\rm if\ } s\in A \\ 0,& {\rm if\ } s\in \Omega \smallsetminus A. \end{cases} \]

Then \(d\left( \left\{ f_{i}:1\leq i\leq m\right\} ,\ L^{\infty }\left( \mu ,G\right) \right) =1.\)

Proof â–¼
Let \(g\in L^{\infty }\left( \mu ,G\right) ,\) then
\[ \underset {1\leq i\leq m}{\sup }\left\Vert f_{i}\left( s\right) -g\left( s\right) \right\Vert \geq d\left( \left\{ f_{i}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) , \]

for all \(s\in \Omega .\)

\begin{align*} \operatorname {ess} \sup \underset {1\leq i\leq m}{\sup }\left\Vert f_{i}\left( s\right) -g\left( s\right) \right\Vert & \geq \operatorname {ess} \sup d\left( \left\{ f_{i}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) \\ & =1. \end{align*}

Thus \(\underset {1\leq i\leq m}{\sup }\left\Vert f_{i}-g\right\Vert _{\infty }\geq 1.\) Since \(g\in L^{\infty }\left( \mu ,G\right) \) was arbitrary, then

\[ d\left( \left\{ f_{i}:1\leq i\leq m\right\} ,\ L^{\infty }\left( \mu ,G\right) \right) \geq 1. \]

To prove the converse inequality. Let \(\epsilon {\gt}0\) be given. Let \(f_{1}^{^{\prime }},f_{2}^{^{\prime }},...,f_{m}^{^{\prime }}\in L^{\infty }\left( \mu ,X\right) \) be countably valued functions such that \(f_{i}^{^{\prime }}\left( \Omega \right) \subset \) \(f_{i}\left( \Omega \right)\),
\(i=1,2,\ldots ,m,\) and

\[ \left\Vert f_{i}^{^{\prime }}-f_{i}\right\Vert {\lt}\tfrac {\epsilon }{3}. \]

We may write \(f_{i}^{^{\prime }}=\sum _{k=1}^{\infty }\chi _{A_{k}}\left( \cdot \right) \ x_{\left( i,k\right) },\) with the subsets \(A_{k}\) disjoint and measurable, and \(x_{\left( i,k\right) }\in \) \(f_{i}\left( \Omega \right) .\) For each \(k\) take \(h_{k}\in G\) such that

\begin{align*} \underset {1\leq i\leq m}{\sup }\left\Vert x_{\left( i,k\right) }-h_{k}\right\Vert & {\lt}d\left( \left\{ x_{\left( i,k\right) }:1\leq i\leq m\right\} ,\ G\right) +\tfrac {\epsilon }{3}\\ & \leq 1+\tfrac {\epsilon }{3}. \end{align*}

It is clear that \(g\) defined by

\[ g=\sum _{k=1}^{\infty }\chi _{A_{k}}\left( \cdot \right) h_{k} \]

belongs to \(L^{\infty }\left( \mu ,G\right) \) and

\begin{align*} & d\big( \left\{ f_{i}:1\leq i\leq m\right\} ,\ L^{\infty }\left( \mu ,G\right) \big) \leq \\ & \leq \underset {1\leq i\leq m}{\sup }\left\Vert f_{i}-f_{i}^{^{\prime }}\right\Vert _{\infty }+d\left( \left\{ f_{i}^{^{\prime }}:1\leq i\leq m\right\} ,\ L^{\infty }\left( \mu ,G\right) \right) \\ & \leq \tfrac {\epsilon }{3}+\underset {1\leq i\leq m}{\sup }\left\Vert g-f_{i}^{^{\prime }}\right\Vert _{\infty }\\ & =\tfrac {\epsilon }{3}+\operatorname {ess} \sup \underset {1\leq i\leq m}{\sup }\left\Vert g\left( t\right) -f_{i}^{^{\prime }}\left( t\right) \right\Vert \\ & =\tfrac {\epsilon }{3}+\operatorname {ess} \sup \underset {1\leq i\leq m}{\sup }\sum _{k=1}^{\infty }\chi _{A_{k}}\left( t\right) \left\Vert x_{\left( i,k\right) }-h_{k}\right\Vert \\ & {\lt}\tfrac {2\epsilon }{3}+\operatorname {ess} \sup \sum _{k=1}^{\infty }\chi _{A_{k}}\left( t\right) d\left( \left\{ x_{\left( i,k\right) }:1\leq i\leq m\right\} ,\ G\right) \\ & \leq \epsilon +\operatorname {ess} \sup d\left( \left\{ f_{i}\left( t\right) :1\leq i\leq m\right\} ,\ G\right) \\ & =\epsilon +1. \end{align*}

Therefore,

\[ d\left( \left\{ f_{i}:1\leq i\leq m\right\} ,\ L^{\infty }\left( \mu ,G\right) \right) \leq \epsilon +1. \]

Theorem 2.4

Let \(X~ \)be a Banach space and \(G\) be a closed subspace of \(X\). Then \(L^{\infty }\left( \mu ,G\right) \) is simultaneously proximinal in \(L^{\infty }\left( \mu ,X\right) \) if and only if for any finite number of elements \(f_{1},f_{2},...,f_{m}\) in \(L^{\infty }\left( \mu ,X\right) ,\) there exists \(g\in L^{\infty }\left( \mu ,G\right) \) such that \(g\left( s\right) \) is a best simultaneous approximation of \(f_{1}\left( s\right) ,f_{2}\left( s\right) ,...,f_{n}\left( s\right) \) for almost all \(s.\)

Proof â–¼

Sufficiency of the condition is an immediate consequence of Corollary 2.2. We will show the necessity. Assume that \(L^{\infty }\left( \mu ,G\right) \) is simultaneously proximinal in \(L^{\infty }\left( \mu ,X\right) \) and take \(f_{1},f_{2},...,f_{m}\) in \(L^{\infty }\left( \mu ,X\right) \). Consider the non-negative measurable function

\begin{align*} h & :\Omega \rightarrow \lbrack 0,\infty )\\ s & \rightarrow d\left( \left\{ f_{i}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) . \end{align*}

Take \(\Omega _{0}=\left\{ s\in \Omega :h\left( s\right) =0\right\} ,\) and for each \(n=1,2,...,\ \)take
\(\Omega _{n}=\left\{ s\in \Omega :n-1{\lt}h\left( s\right) \leq n\right\} .\) Of course, we may forget those \(\Omega _{n}\) which are \(\mu -\)null sets, so, without loss of generality, we will assume that \(\mu \left( \Omega _{n}\right) {\gt}0\) for all \(n.\) Now for each \(n=1,2,..., \) we define \(f_{in}:\Omega \rightarrow X\) by

\[ f_{in}\left( s\right) = \begin{cases} \tfrac {1}{h\left( s\right) }f_{i}\left( s\right), & {\rm if\ } s\in \Omega _{n} \\ 0, & {\rm if\ } s\in \Omega \smallsetminus \Omega _{n}. \end{cases} \]

It is clear that \(f_{in}\) \(\in L^{\infty }\left( \mu ,X\right) ,\) \(i=1,2,...,m, \) and also that

\begin{align*} d\left( \left\{ f_{in}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) & =d\left( \left\{ \tfrac {1}{h\left( s\right) }f_{i}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) \\ & =\tfrac {1}{h\left( s\right) }d\left( \left\{ f_{i}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) \\ & =1, \end{align*}

for all \(s\in \Omega _{n}.\) So, it follows from proceeding lemma that

\[ d\left( \left\{ f_{in}:1\leq i\leq m\right\} ,\ L^{\infty }\left( \mu ,G\right) \right) =1. \]

On the other hand, using simultaneous proximinality of \(L^{\infty }\left( \mu ,G\right) ,\) we deduce that there exists \(g_{n}\in L^{\infty }\left( \mu ,G\right) \) such that

\begin{align*} \underset {1\leq i\leq m}{\sup }\left\Vert f_{in}-g_{n}\right\Vert _{\infty } & =d\left( \left\{ f_{in}:1\leq i\leq m\right\} ,\ L^{\infty }\left( \mu ,G\right) \right) \\ & =1. \end{align*}

Therefore, we have

\begin{align*} 1 & =d\left( \left\{ f_{in}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) \\ & \leq \underset {1\leq i\leq m}{\sup }\left\Vert f_{in}\left( s\right) -g_{n}\left( s\right) \right\Vert \\ & \leq \underset {1\leq i\leq m}{\sup }\left\Vert f_{in}-g_{n}\right\Vert _{\infty }\\ & =1, \end{align*}

for almost all \(s\in \Omega _{n}.\) Then,

\[ \underset {1\leq i\leq m}{\sup }\left\Vert f_{in}\left( s\right) -g_{n}\left( s\right) \right\Vert =1, \]

for almost all \(s\in \Omega _{n}.\) Thus

\begin{align*} d\left( \left\{ f_{i}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) & =h\left( s\right) \\ & =h\left( s\right) \underset {1\leq i\leq m}{\sup }\left\Vert f_{in}\left( s\right) -g_{n}\left( s\right) \right\Vert \\ & =\underset {1\leq i\leq m}{\sup }\left\Vert h\left( s\right) f_{in}\left( s\right) -h\left( s\right) g_{n}\left( s\right) \right\Vert \\ & =\underset {1\leq i\leq m}{\sup }\left\Vert f_{i}\left( s\right) -h\left( s\right) g_{n}\left( s\right) \right\Vert , \end{align*}

for almost all \(s\in \Omega _{n}.\) We do notice that, if \(s\in \Omega _{0},\) then \(f_{i}\left( s\right) =f_{j}\left( s\right) ,\) for 1\(\leq i\leq j\leq m. \) Hence, it is clear that \(g\) defined by

\[ g\left( s\right) =\chi _{\Omega _{0}}\left( s\right) f_{1}\left( s\right) +\sum _{n=1}^{\infty }\chi _{\Omega _{n}}\left( s\right) h\left( s\right) g_{n}\left( s\right) , \]

for all \(s\in \Omega \) enjoys the required property.

3 Main Result

The following lemmas will be used to prove our main result.

Lemma 3.1

[21] Let \(\left( \Omega ,\Sigma ,\mu \right) \) be a complete measure space, \(X\) a Banach space, and \(f\) a strongly measurable function from \(\Omega \) to \(X\). Then \(f\) is measurable in the classical sense; \(\ f^{-1}\left( O\right) \) is measurable for every open set \(O\subset X.\)

Lemma 3.2

[21] Let \(\left( \Omega ,\Sigma ,\mu \right) \) be a complete measure space, \(X\) a Banach space. If \(f:\Omega \rightarrow X\) is measurable in the classical sense and has essentially separable range, then \(f\) is strongly measurable.

Let \(\Phi \) be a set-valued mapping, taking each point of a measurable space \(\Omega \) into a subset of a metric space \(X.\) We say that \(\Phi \) is weakly measurable if \(\Phi ^{-1}(O)\) is measurable in \(\Omega \) whenever \(O\) is open in \(X.\) Here we have put, for any \(A\) \(\subset \) \(X,\)

\[ \Phi ^{-1}(A)=\{ s\in \Omega :\phi (s)\cap A\neq \phi \} . \]

The following theorem is due to Kuratowski [17], it is known as Measurable Selection Theorem.

Theorem 3.3

[17] Let \(\Phi \) be a weakly measurable set-valued map which carries each point of measurable space \(\Omega \) to a closed nonvoid subset of a complete separable metric space \(X\). Then \(\Phi \) has a measurable selection; i.e., there exists a function \(f:\Omega \rightarrow X\) such that \(f(s)\in \phi (s)\) for each \(s\in \Omega \) and \(f^{-1}(O)\) is measurable in \(\Omega \) whenever \(O\) is open in \(X.\)

Theorem 3.4

Let \(X~ \)be a Banach space and \(G\) be a closed separable subspace of \(X\). Then the following are equivalent:

  1. \(G\) is simultaneously proximinal in \(X.\)

  2. \(L^{\infty }\left( \mu ,G\right) \) is simultaneously proximinal in \(L^{\infty }\left( \mu ,X\right) .\)

Proof â–¼

\(\left( 2\right) \Rightarrow \left( 1\right) :\) Let \(x_{1},x_{2},...,x_{m}\) be any finite number of elements in \(X.\) Define \(f_{i}:\Omega \rightarrow X,\) \(i=1,2,...,m,\) by

\[ f_{i}\left( s\right) =x_{i}\ . \]

Using simultaneous proximinality of \(L^{\infty }\left( \mu ,G\right) \) and Theorem 2.4, we get \(g\in L^{\infty }\left( \mu ,G\right) \) such that \(g\left( s\right) \) is a best simultaneous approximation of
\(f_{1}\left( s\right) ,f_{2}\left( s\right) ,...,f_{n}\left( s\right) \) for almost all \(s. \) Choose \(s_{0}\in \Omega \) so that \(\ g\left( s_{0}\right) \) is a best simultaneous approximation of \(x_{1},x_{2},...,x_{m}\) in \(G.\)

\(\left( 1\right) \Rightarrow \left( 2\right) :\) Let \(f_{1},f_{2},...,f_{m}\) be any finite number of elements in \(L^{\infty }\left( \mu ,X\right) .\) For each \(s\in \Omega \) define

\[ \Phi \left( s\right) =\Big\{ g\in G:\underset {1\leq i\leq m}{\sup }\left\Vert f_{i}\left( s\right) -g\right\Vert =d\left( \left\{ f_{i}\left( s\right) :1\leq i\leq m\right\} ,\ G\right) \Big\} . \]

For each \(s\in \Omega ,\) \(\Phi \left( s\right) \) is closed, bounded, and nonvoid subset of \(G.\) We shall show that \(\Phi \) is weakly measurable. Let \(O\) be an open set in \(X,\) the set

\[ \Phi ^{-1}(O)=\{ s\in \Omega :\Phi (s)\cap O\neq \phi \} \]

can be also be described as

\[ \Phi ^{-1}(O)=\Big\{ s\in \Omega :\underset {g\in G}{\inf }\underset {\ 1\leq i\leq m}{\sup }\left\Vert f_{i}\left( s\right) -g\right\Vert =\underset {g\in O}{\inf }\underset {\ 1\leq i\leq m}{\sup }\left\Vert f_{i}\left( s\right) -g\right\Vert \Big\} . \]

Since \(\left( \Omega ,\Sigma ,\mu \right) \) is complete, \(f_{i}\) is measurable in the classical sense for \(i=1,2,...,m,\) by Lemma 3.1. Since subtraction in \(X,\) \(\sup ,\) and the norm in \(X\) are continuous, then the map

\[ s\rightarrow \underset {g\in A}{\inf }\underset {\ 1\leq i\leq m}{\sup }\left\Vert f_{i}\left( s\right) -g\right\Vert \]

is measurable for any set \(A.\) It follows that \(\Phi ^{-1}(O)\) is measurable. By Theorem 3.3, \(\Phi \) has a measurable selection; i.e., there exists a function  \(f:\Omega \rightarrow G\) such that \(f(s)\in \phi (s)\) for each \(s\epsilon \Omega \) \(\ \)and \(f\) is measurable in the classical sense. By Lemma 3.2, \(f\) is strongly measurable. Hence \(f\) is a best simultaneous approximation for \(f_{1},f_{2},...,f_{m}\) in \(L^{\infty }\left( \mu ,G\right) \) by Theorem 2.4.

Acknowledgement

I would like to thank J. Mendoza for providing me a reprint of his paper.

Bibliography

1

A.P. Bosznoy, A remark on simultaneous approximation, J. Approx. Theory, 28 (1978), pp. 296–298.

2

A.S. Holland, B.N. Sahney and J.Tzimbalario, On best simultaneous approximation, J. Indian Math. Soc., 40 (1976), pp. 69–73.

3

C. B. Dunham, Simultaneous Chebyshev approximation of functions on an interval, Proc. Amer. Math. Soc., 18 (1967), pp. 472–477.

4

Chong Li, On best simultaneous approximation, J. Approx. Theory, 91 (1998), pp. 332–348.

5

E. Abu-Sirhan, Best simultaneous approximation in \(L^{p}\left( I,X\right) \), Inter. J. Math. Analysis, 3 (2009) no. 24, pp.  1157–1168.

6

E. Abu-Sirhan and R. Khalil, Best simultaneous approximation in \(L^{\infty }\left( I,X\right) \), Indian Journal of Mathematics, 51 (2009) no.2, pp. 391–400.

7

Eyad Abu-Sirhan, On simultaneous approximation in function spaces, Approximation Theory XIII: San Antonio 2010, Springer Proceedings in Mathematics, NY 10013, USA 2012.

8

Eyad Abu-Sirhan, Best p-simultaneous approximaton in \(L^{p}\left( \mu ,X\right) \), Journal of Applied Functional Analysis, 7 (2012) no. 3, pp. 225–235.

9

Fathi B. Saidi, Deep Hussein and R. Khalil, Best simultaneous approximation in \(L^{p}(I,E)\), J. Approx. Theory, 116 (2002), pp. 369–379.

10

G. A. Watson, A charaterization of best simultaneous approximation, J. Approx. Theory, 75 (1998), pp. 175–182.

11

J. Mach, Best simultaneous approximation of bounded functions with values in certain Banach spaces, Math. Ann., 240 (1979), pp. 157–164.

12

J. Diestel and J.R. Uhl, Vector Measures, Math. Surveys Monographs, vol.15, Amer. Math. Soc., Providence, RI, 1977.

13

J.B. Diaz and H.W. McLaughlin, On simultaneous Chebyshev approximation and Chebyshev approximation with an additive weight function, J. Approx. Theory, 6 (1972), pp. 68–71.

14

J.B. Diaz and H.W. McLaughlin, Simultaneous approximation of a set of bounded real functions, Math. Comp., 23 (1969), pp. 583–593.

15

J. Mendoza, Proximinality in \(L^{p}\left( \mu ,X\right) \), J. Approx. Theory, 93 (1998), pp. 331–343.

16

J. Mendoza and Tijani Pakhrou, Best simultaneous approximation in \(L^{1}\left( \mu ,X\right) \), J. Approx. Theory, 145 (2007), pp. 212–220.

17

K. Kuratowiski and C. Ryll-Nardzewski, A general therem on selector, Bull. Acad. Polonaise Science, Series Math. Astr. Phys., 13 (1965), pp. 379–403.

18

S. Tanimoto, On best simultaneous approximation, Math. Japonica, 48 (1998) no. 2, pp. 275–279.

19

T. Pakhrou, Best simultaneous approximation in \(L^{\infty }\left( \mu ,X\right) \), Math. Nachrichten, 281 (2008) no. 3, pp. 396–401.

20

W.A Light, Proximinality in \(L^{p}(I,X)\), J. Approx. Theory, 19(1989), pp. 251–259.

21

W.A Light and E.W. Cheney, Approximation Theory in Tensor Product Spaces, Lecture Notes in Mathematics, 1169, Spinger-Velag, Berlin, 1985.