Expanding the applicability of Newton-Tikhonov method for ill-posed equations

Authors

  • Ioannis K. Argyros Cameron University, USA
  • Santhosh George National Institute of Technology Karnataka, India

DOI:

https://doi.org/10.33993/jnaat432-1025

Keywords:

Newton-Tikhonov method, Hilbert space, semilocal convergence, majorizing sequence, Hammerstein operator, ill-posed problem
Abstract views: 286

Abstract

We present a new semilocal convergence analysis of Newton- Tikhonov methods for solving ill-posed operator equations in a Hilbert space setting. Using more precise majorizing sequences and under the same computational cost as in earlier studies such as [13]-[20], we provide: weaker sufficient convergence criteria; tighter error estimates on the distances involved and an at least as precise information on the location of the solution. Applications include Hammertein nonlinear integral equations.

Downloads

Download data is not yet available.

References

I.K. Argyros, Convergence and Application of Newton-type Iterations, Springer, 2008.

I.K. Argyros, Approximating solutions of equations using Newton’s method with a modified Newton’s method iterate as a starting point, Rev. Anal. Numer. Theor. Approx.,36 (2007), pp. 123-138, http://ictp.acad.ro/jnaat/journal/article/view/2007-vol36-no2-art2

I.K. Argyros, A Semilocal convergence for directional Newton methods, Math. Comp. 80, (2011), pp. 327-343, http://dx.doi.org/10.1090/S0025-5718-2010-02398-1 DOI: https://doi.org/10.1090/S0025-5718-2010-02398-1

I.K. Argyros and S. Hilout, Weaker conditions for the convergence of Newton’s method, J. Complexity, 28 , (2012), pp. 364-387, http://dx.doi.org/10.1016/j.jco.2011.12.003 DOI: https://doi.org/10.1016/j.jco.2011.12.003

I.K. Argyros, Y.J. Cho and S. Hilout, Numerical Methods for Equations and its Applications, CRC Press, Taylor and Francis, New York, 2012. DOI: https://doi.org/10.1201/b12297

A. Bakushinsky and A. Smirnova, On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems, Numer. Funct. Anal. Optim.26 (2005), pp. 35-48, http://dx.doi.org/10.1081/NFA-200051631 DOI: https://doi.org/10.1081/NFA-200051631

A. Binder, H.W. Engl, and S. Vessela, Some inverse problems for a nonlinear parabolic equation connected with continuous casting of steel: stability estimate and regularization, Numer. Funct. Anal. Optim.,11 (1990), pp. 643-671, http://dx.doi.org/10.1080/01630569008816395 DOI: https://doi.org/10.1080/01630569008816395

H.W. Engl, M. Hanke and A. Neubauer, Tikhonov regularization of nonlinear differential equations, Inverse Methods in Action, P.C. Sabatier, ed., Springer-Verlag, New York 1990, pp. 92-105. DOI: https://doi.org/10.1007/978-3-642-75298-8_12

H.W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularization of nonlinear ill-posed problems, Inverse Problems,5 (1989), pp. 523-540, http://dx.doi.org/10.1088/0266-5611/5/4/007 DOI: https://doi.org/10.1088/0266-5611/5/4/007

C.W. Groetsch, Theory of Tikhonov Regularization for Fredholm Equation of the First Kind, Pitmann Books, London, 1984.

C.W. Groetsch and J.E. Guacaneme Arcangeli’s method for Fredhom equations of the first kind, Proc. Amer. Math. Soc. 99 (1987), pp. 256-260, http://dx.doi.org/10.1090/S0002-9939-1987-0870781-5 DOI: https://doi.org/10.2307/2046621

J.E. Guacaneme, Aparameter choice for simplified regularization, Rostock. Math. Kolloq.,42(1990), pp. 59-68.

S. George, Newton-Tikhonov regularization of ill-posed Hammerstein operator equation, J. Inverse Ill-Posed Probl.,14(2006), no. 2, pp. 135-146, http://dx.doi.org/10.1515/156939406777571076 DOI: https://doi.org/10.1515/156939406777571076

S. George, Newton-Lavrentiev regularization of ill-posed Hammerstein type operator equation, J. Inverse Ill-Posed Probl.,14, (2006), no. 6, pp. 573-582, http://dx.doi.org/10.1515/156939406778474550 DOI: https://doi.org/10.1515/156939406778474550

S. George and A.I. Elmahdy, A quadratic convergence yielding iterative method for nonlinear ill-posed operator equations, Comput. Methods Appl. Math.12, no. 1 (2012),pp. 32-45, http://dx.doi.org/10.2478/cmam-2012-0003 DOI: https://doi.org/10.2478/cmam-2012-0003

S. George and M. Kunhanandan, An iterative regularization method for Ill-posed Hammerstein type operator equation, J. Inverse Ill-Posed Probl.,17(2009), pp. 831-844, http://dx.doi.org/10.1515/JIIP.2009.049 DOI: https://doi.org/10.1515/JIIP.2009.049

S. George and M. Kunhanandan, Iterative regularization methods for ill-posed Hammerstein type operator equation with monotone nonlinear part, Int. J. Math. Anal.,4 (2010), no. 34, pp. 1673-1685.

S. George and M.T. Nair, An a posteriori parameter choice for simplified regularization of ill-posed problems, Integral Equations Operator Theory,16(1993), pp. 392-399, http://dx.doi.org/10.1007/BF01204229 DOI: https://doi.org/10.1007/BF01204229

S. George and M.T. Nair, On a generalized Arcangeli’s method for Tikhonov regularization with inexact data, Numer. Funct. Anal. Optim.,19(1998), (nos. 7–8), pp. 773-787, http://dx.doi.org/10.1080/01630569808816858 DOI: https://doi.org/10.1080/01630569808816858

S. George and M.T. Nair, A modified Newton-Lavrentiev regularization for nonlinear ill-posed Hammerstein-Type operator equation, J. Complexity, 24 (2008), pp. 228-240, http://dx.doi.org/10.1016/j.jco.2007.08.001 DOI: https://doi.org/10.1016/j.jco.2007.08.001

M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of Landweber iteration of nonlinear ill-posed problems, Numer. Math.,72 (1995), pp. 21-37, http://dx.doi.org/10.1007/s002110050158 DOI: https://doi.org/10.1007/s002110050158

Jin Qi-nian and Hou Zong-yi, Finite-dimensional approximations to the solutions of nonlinear ill-posed problems, Appl. Anal.,62(1996), pp. 253-261, http://dx.doi.org/10.1007/s002110050158 DOI: https://doi.org/10.1080/00036819608840482

Jin Qi-nian and Hou Zong-yi, On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems, Numer. Math., 83 (1999), pp. 139-159, http://dx.doi.org/10.1007/s002110050442 DOI: https://doi.org/10.1007/s002110050442

L.V. Kantorovich and G.P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, New York, 1964.

B.A. Mair, Tikhonov regularization for finitely and infinitely smoothing operators, SIAM J. Math. Anal., 25(1994), pp. 135-147, http://dx.doi.org/10.1137/S0036141092238060 DOI: https://doi.org/10.1137/S0036141092238060

S. Pereverzev and E. Schock, On the adaptive selection of the parameter in regularization of ill-posed problems, SIAM J. Numer. Anal.,43(2005), no. 5, pp. 2060-2076, http://dx.doi.org/10.1137/S0036142903433819 DOI: https://doi.org/10.1137/S0036142903433819

O. Scherzer, A parameter choice for Tikhonov regularization for solving nonlinear inverse problems leading to optimal rates, Appl. Math.,38 (1993), pp. 479-487. DOI: https://doi.org/10.21136/AM.1993.104570

O. Scherzer, H.W. England K. Kunisch, Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J. Numer. Anal.,30 (1993), no.6, pp. 1796-1838, http://dx.doi.org/10.1137/0730091 DOI: https://doi.org/10.1137/0730091

O. Scherzer, The use of Tikhonov regularization in the identification of electrical conductivities from overdetermined boundary data, Results Mathematics, 22 (1992), pp. 599-618. DOI: https://doi.org/10.1007/BF03323107

O. Scherzer, H.W. Engl and R.S. Anderssen, Parameter identification from boundary measurements in parabolic equation arising from geophysics, Nonlinear Anal., 20 (1993), pp. 127-156, http://dx.doi.org/10.1016/0362-546X(93)90013-I DOI: https://doi.org/10.1016/0362-546X(93)90013-I

T. Raus, On the discrepancy principle for the solution of ill-posed problems, Uch. Zap.Tartu. Gos. Univ.,672 (1984), pp. 16-26 (In Russian)

Downloads

Published

2014-08-01

How to Cite

Argyros, I. K., & George, S. (2014). Expanding the applicability of Newton-Tikhonov method for ill-posed equations. Rev. Anal. Numér. Théor. Approx., 43(2), 141–158. https://doi.org/10.33993/jnaat432-1025

Issue

Section

Articles