Analytic and empirical study of the rate of convergence of some iterative methods

Authors

  • Vasile Berinde North University of Baia Mare, Romania
  • Abdul Rahim Khan King Fahd University of Petroleum and Minerals, Saudi Arabia
  • Mădălina Păcurar Babeş-Bolyai University, Romania

DOI:

https://doi.org/10.33993/jnaat441-1059

Keywords:

metric space, contractive mapping, fixed point, k-step fixed point, iterative method, rate of convergence
Abstract views: 414

Abstract

We study analytically and empirically the rate of convergence of two \(k\)-step fixed point iterative methods in the family of methods
\[
x_{n+1}=T(x_{i_0+n-k+1},x_{i_1+n-k+1},\dots, x_{{i_{k-1}+n-k+1}}),\,n\geq k-1,
\]

where \(T\colon X^k\rightarrow X\) is a mapping satisfying some Presic type contraction conditions and \((i_0,i_1,\dots,i_{k-1})\) is a permutation of  \((0,1,\dots,k-1)\).   We also consider the Picard iteration associated to the fixed point problem  \(x=T(x,\dots,x)\) and compare analytically and empirically the rate and speed of convergence of the three iterative methods. Our approach opens a new perspective on the study of the rate of convergence / speed of convergence of fixed point iterative methods and also illustrates the essential difference between them by means of some concrete numerical experiments.

Downloads

Download data is not yet available.

References

V. Berinde, Despre ordinul de convergenta al sirurilor de numere reale, Gazeta Matematica, 103 (1998) no. 4, pp. 146-153 (in Romanian).

V. Berinde, The generalized ratio test revisited, Bul. Stiint. Univ. Baia Mare, Fasc. Mat.-Inf., 16 (2000) no. 2, pp. 303-306.

V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theory Appl., 2004, no. 2, pp. 97-105. DOI: https://doi.org/10.1155/S1687182004311058

V. Berinde, Iterative Approximation of Fixed Points, Springer, Berlin Heidelberg New York, 2007. DOI: https://doi.org/10.1109/SYNASC.2007.49

V. Berinde, A note on a difference inequality used in the iterative approximation of fixed points, Creat. Math. Inform., 18 (2009) no. 1, pp. 6-9.

V. Berinde, On a family of first order difference inequalities used in the iterative approximation of fixed points, Creat. Math. Inform., 18 (2009) no. 2, pp. 110-122.

V. Berinde, Approximating common fixed points of noncommuting discontinuous weakly contractive mappings in metric spaces, Carpathian J. Math., 25 (2009) no. 1, pp. 13-22.

V. Berinde and M. Pacurar, An iterative method for approximating fixed points of Presic nonexpansive mappings, Rev. Anal. Numer. Theor. Approx., 38 (2009) no. 2, pp. 144-153, https://ictp.acad.ro/jnaat/journal/article/view/2009-vol38-no2-art4

V. Berinde and M. Pacurar, Two elementary applications of some Presic type fixed point theorems, Creat. Math. Inform., 20 (2011) no. 1, pp. 32-42. DOI: https://doi.org/10.37193/CMI.2011.01.15

V. Berinde and M. Pacurar, O metoda de tip punct fix pentru rezolvarea sistemelor ciclice, Gazeta Matematica, Seria B, 116 (2011) no. 3, pp. 113-123.

Y.-Z. Chen, A Presic type contractive condition and its applications, Nonlinear Anal., 71 (2009) no. 12, e2012--e2017. DOI: https://doi.org/10.1016/j.na.2009.03.006

L.B. Ciric and S.B. Presic, On Presic type generalization of the Banach contraction mapping principle, Acta Math. Univ. Comenianae, 76 (2007) no. 2, pp. 143?-147.

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 10 (1968), pp. 71-76. DOI: https://doi.org/10.2307/2316437

A.R. Khan, V. Kumar, and N. Hussain, Analytical and numerical treatment of Jungck-type iterative schemes, Appl. Math. Comput., 231 (2014), pp. 521-535, https://doi.org/10.1016/j.amc.2013.12.150 DOI: https://doi.org/10.1016/j.amc.2013.12.150

J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equation in Several Variables, Academic Press, New York, 1970.

A.M. Ostrowski, The round-off stability of iterations, Zeit. Angev. Math. Mech., 47(1967) No. 2, pp. 77-81, https://doi.org/10.1002/zamm.19670470202 DOI: https://doi.org/10.1002/zamm.19670470202

M. Pacurar, Approximating common fixed points of Presic-Kannan type operators by a multi-step iterative method, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat., 17 (2009) no. 1, pp. 153-168.

M. Pacurar, Iterative Methods for Fixed Point Approximation, Risoprint, Cluj-Napoca, 2010.

M. Pacurar, A multi-step iterative method for approximating fixed points of Presic-Kannan operators, Acta Math. Univ. Comen. New Ser., 79 (2010), no. 1, pp. 77-88.

M. Pacurar, A multi-step iterative method for approximating common fixed points of Presic-Rus type operators on metric spaces, Stud. Univ. Babes-Bolyai Math., 55 (2010) no. 1, pp. 149-162.

M. Pacurar, Fixed points of almost Presic operators by a k-step iterative method, An. Stiint,. Univ. Al. I. Cuza Iasi, Ser. Noua, Mat. 57 (2011), Supliment, pp. 199-210. DOI: https://doi.org/10.2478/v10157-011-0014-3

M. Pacurar, Common fixed points for almost Presic type operators, Carpathian J. Math., 28 (2012) no. 1, pp. 117-126. DOI: https://doi.org/10.37193/CJM.2012.01.07

I. Pavaloiu, Rezolvarea ecuatiilor prin interpolare, Editura Dacia, Cluj-Napoca, 1981 (in Romanian)

I. Pavaloiu, Sur l'ordre de convergence des methodes d'iteration, Mathematica, 23(46) (1981), pp. 261-272.

I. Pavaloiu , La convergence de certaines methodes iteratives pour resoudre certaines equations operatorielles, Seminar on Functional Analysis and Numerical Methods, Preprint 86-1, Univ. Babes-Bolyai Cluj-Napoca, (1986), pp. 127-132.

I. Pavaloiu , Sur l'approximation des racines des equations dans un espace metrique, Seminar on Functional Analysis and Numerical Methods, Preprint 89-1, Univ. Babes-Bolyai, Cluj-Napoca, (1989), pp. 95-104.

I. Pavaloiu, On the convergence order of the multistep methods, Bul. Stiint. Univ. Baia Mare Ser. B, 13 (1997) nos. 1-2, pp. 107-116.

I. Pavaloiu and N. Pop, Interpolare si aplicatii, Risoprint, Cluj-Napoca, 2005 (in Romanian).

S.B. Presic, Sur une classe d' inequations aux differences finites et sur la convergence de certaines suites, Publ. Inst. Math. (Beograd)(N.S.), 5(19) (1965), pp. 75-78.

I.A. Rus, An iterative method for the solution of the equation x = f(x, . . . , x), Rev. Anal. Numer. Theor. Approx., 10 (1981) no. 1, pp. 95—100, https://ictp.acad.ro/jnaat/journal/article/view/1981-vol10-no1-art11

S. Shukla, Presic type results in 2-Banach spaces, Afr. Mat., 25 (2014) no. 4, pp. 1043-1051, https://doi.org/10.1007/s13370-013-0174-2 DOI: https://doi.org/10.1007/s13370-013-0174-2

S. Shukla and N. Shahzad, G-Presic operators on metric spaces endowed with a graph and fixed point theorems, Fixed Point Theory Appl., 2014, 2014:127, 10 pp, https://doi.org/10.1186/1687-1812-2014-127 DOI: https://doi.org/10.1186/1687-1812-2014-127

S. Shukla and R. Sen, Set-valued Presic-Reich type mappings in metric spaces, Rev. R. Acad. Cienc. Exactas FŠs. Nat. Ser. A Math. RACSAM, 108 (2014) no. 2, pp. 431-440. DOI: https://doi.org/10.1007/s13398-012-0114-2

S. Shukla, Set-valued Presic-Ciric type contraction in 0-complete partial metric spaces, Mat. Vesnik 66 (2014) no. 2, pp. 178-189. DOI: https://doi.org/10.1155/2014/652925

S. Shukla, S. Radenovic and S. Pantelic, Some fixed point theorems for Presic-Hardy-Rogers type contractions in metric spaces, J. Math., 2013, Art. ID 295093, 8 pp, https://doi.org/10.1155/2013/295093 DOI: https://doi.org/10.1155/2013/295093

G.M. Eshaghi, S., Pirbavafa, M., Ramezani, C., Park and D.Y. Shin, Presic- Kannan-Rus fixed point theorem on partially order metric spaces, Fixed Point Theory, 15 (2014) no. 2, pp. 463-474.

T. Nazir and M. Abbas, Common fixed point of Presic type contraction mappings in partial metric spaces, J. Nonlinear Anal. Optim., 5 (2014) no. 1, pp. 49-55. DOI: https://doi.org/10.1186/1029-242X-2014-237

N.V. Luong and N.X. Thuan, Some fixed point theorems of Presic-Ciric typé, Acta Univ. Apulensis Math. Inform., 30 (2012), pp. 237-249.

M.S. Khan, M. Berzig and B. Samet, Some convergence results for iterative sequences of Presic type and applications, Adv. Difference Equ., 2012, 2012:38, 12 pp, https://doi.org/10.1186/1687-1847-2012-38 DOI: https://doi.org/10.1186/1687-1847-2012-38

R. George, K.P. Reshma and R.A. Rajagopalan, Generalised fixed point theoremof Presi? type in cone metric spaces and application to Markov process, Fixed Point Theory Appl., 2011, 2011:85, 8 pp., https://doi.org/10.1186/1687-1812-2011-85 DOI: https://doi.org/10.1186/1687-1812-2011-85

R. George and M.S. Khan, On Presic type extension of Banach contraction principle, Int. J. Math. Anal. (Ruse), 5 (2011) nos. 21-24, pp. 1019-1024.

H.J. Weinitschke, Uber eine Klasse von Iterationsverfahren, Numer. Math., 6 (1964), pp. 395-404 (in German), https://doi.org/10.1007/BF01386089 DOI: https://doi.org/10.1007/BF01386089

Downloads

Published

2015-12-18

How to Cite

Berinde, V., Khan, A. R., & Păcurar, M. (2015). Analytic and empirical study of the rate of convergence of some iterative methods. J. Numer. Anal. Approx. Theory, 44(1), 25–37. https://doi.org/10.33993/jnaat441-1059

Issue

Section

Articles