Multicentric calculus and the Riesz projection

Authors

  • Diana Apetrei Aalto University, Finland
  • Olavi Nevanlinna Aalto University, Finland

DOI:

https://doi.org/10.33993/jnaat442-1064

Keywords:

multicentric calculus, Riesz projection, spectral projections, sign function of an operator, lemniscates
Abstract views: 323

Abstract

In multicentric holomorphic calculus one represents the function ? using a new polynomial variable \(w = p(z)\) in such a way that when evaluated at the operator \(p(A)\) is small in norm. Here it is assumed that \(p\) has distinct roots. In this paper we discuss two related problems, separating a compact set, such as the spectrum, into different components by a polynomial lemniscate, and then applying the calculus for computation and estimation of the Riesz spectral projection. It may then be desirable to move to using \(p(z)^n\) as a new variable and we develop the necessary modifications to incorporate the multiplicities in the roots.

Downloads

Download data is not yet available.

References

D. Apetrei, O. Nevanlinna,Multicentric calculus and the Riesz projection, http://arxiv.org/abs/1602.08337, Feb 29, 2016, https://doi.org/10.48550/arXiv.1602.08337

J.B. Conway, A Course in Functional Analysis, Springer, New York, 1990.

M. Marden,Geometry of Polynomials, AMS, Providence, Rhode Island, 1989.

O. Nevanlinna,Computing the spectrum and representing the resolvent, Numer. Funct.Anal. Optimiz.30(2009) 9-10, 1025-1047, https://doi.org/10.1080/01630560903393162 DOI: https://doi.org/10.1080/01630560903393162

O. Nevanlinna,Convergence of Iterations for Linear Equations, Birkhauser, Basel,1993. DOI: https://doi.org/10.1007/978-3-0348-8547-8

O. Nevanlinna,Hessenberg matrices in Krylov subspaces and the computation of thespectrum, Numer. Funct. Anal. Optimiz.,16(1995) 3-4, pp. 443-473, https://doi.org/10.1080/01630569508816627 DOI: https://doi.org/10.1080/01630569508816627

O. Nevanlinna,Lemniscates and K-spectral sets, J. Funct. Anal.,262(2012), pp.1728-1741, https://doi.org/10.1016/j.jfa.2011.11.019 DOI: https://doi.org/10.1016/j.jfa.2011.11.019

O. Nevanlinna,Meromorphic Functions and Linear Algebra, AMS Fields Institute Monograph 18, 2003. DOI: https://doi.org/10.1090/fim/018

O. Nevanlinna,Multicentric holomorphic calculus, Comput. Methods Funct. Theory,12(2012) 1, pp. 45-65. DOI: https://doi.org/10.1007/BF03321812

O. Nevanlinna,Polynomial as a new variable - a Banach algebra with a functionalcalculus, , July 3, 2015, http://arxiv.org/abs/1506.00634 DOI: https://doi.org/10.7153/oam-10-33

V. Paulsen,Completely Bounded Maps and Operator Algebras, Cambridge UniversityPress, 2002, https://www.researchgate.net/profile/Vern-Paulsen/publication/200524409, DOI: https://doi.org/10.1017/CBO9780511546631

Th. Ransford,Potential Theory in Complex Plane, London Math. Soc. Student Texts28, Cambridge University Press, 1995.Received by the editors: November 9, 2015. DOI: https://doi.org/10.1017/CBO9780511623776

Downloads

Additional Files

Published

2015-12-31

How to Cite

Apetrei, D., & Nevanlinna, O. (2015). Multicentric calculus and the Riesz projection. J. Numer. Anal. Approx. Theory, 44(2), 127–145. https://doi.org/10.33993/jnaat442-1064

Issue

Section

Articles