Approximation of twice differentiable functions by positive linear operators

Authors

  • I. Raşa Polytechnic Institute Cluj-Napoca, Romania
Abstract views: 174

Abstract

Not available.

Downloads

Download data is not yet available.

References

Aramă, O., Propriétés concernant la monotonie de la suite des polynômes d'interpolation de S. N. Bernšteĭn et leur application à l'étude de l'approximation des fonctions. (Romanian) Acad. R. P. Romîne. Fil. Cluj. Stud. Cerc. Mat. 8 1957 195-210, MR0124674.

Bauer, Heinz, Leha, Gottlieb, Papadopoulou, Susanne, Determination of Korovkin closures. Math. Z. 168 (1979), no. 3, 263-274, MR0544594.

Censor, Erga, Quantitative results for positive linear approximation operators. J. Approximation Theory 4 1971 442-450, MR0287234, https://doi.org/10.1016/0021-9045(71)90009-8

Devore, R., The approximation of continuous functions by positive linear operators, Lect. Notes in Math., 293, Springer Verlag, Berlin-Heidelberg-New York, 1971.

Nishishiraho, Toshihiko, Convergence of positive linear approximation processes. Tohoku Math. J. (2) 35 (1983), no. 3, 441-458, MR0711359.

Raşa, I., On some results of C. A. Micchelli. Anal. Numér. Théor. Approx. 9 (1980), no. 1, 125-127, MR0617263.

Raşa, I., On the barycenter formula. Anal. Numér. Théor. Approx. 13 (1984), no. 2, 163-165, MR0797978.

Shisha, O., Mond, B., The degree of convergence of sequences of linear positive operators. Proc. Nat. Acad. Sci. U.S.A. 60 1968 1196-1200, MR0230016.

Downloads

Published

1985-08-01

How to Cite

Raşa, I. (1985). Approximation of twice differentiable functions by positive linear operators. Anal. Numér. Théor. Approx., 14(2), 131–135. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1985-vol14-no2-art6

Issue

Section

Articles