The stochastic bottleneck transportation problem

Authors

  • Ştefan Ţigan Territorial Computing Center, Cluj-Napoca, Romania
  • I. M. Stancu-Minasian Laboratories Department of Cybernetics, Bucharest, Romania
Abstract views: 146

Abstract

Not available.

Downloads

Download data is not yet available.

References

Achary, K. K., Seshan, C. R., A time minimising transportation problem with quantity dependent time. European J. Oper. Res. 7 (1981), no. 3, 290-298, MR0619619, https://doi.org/10.1016/0377-2217(81)90351-9

A.R. Barsov (1959): What is Linear Programming, Moscow 90-101 (in Russian).

Bereanu, B. On stochastic linear programming. I. Distribution problems: A single random variable. Rev. Math. Pures Appl. (Bucarest) 8 1963 683-697, MR0177806.

Bhatia, H. L., Swaroop, Kanti, Puri, M. C., A procedure for time minimization transportation problem. Indian J. Pure Appl. Math. 8 (1977), no. 8, 920-929, MR0475828.

Derigs, U., Zimmermann, U., An augmenting path method for solving linear bottleneck assignment problems. Computing 19 (1977/78), no. 4, 285-295, MR0475905, https://doi.org/10.1007/bf02252026

Garfinkel, R. S., Rao, M. R., The bottleneck transportation problem. Naval Res. Logist. Quart. 18 (1971), 465-472, MR0337282, https://doi.org/10.1002/nav.3800180404

Grabowski, W., Problem of transportation in minimum time. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 1964 107-108, MR0163766.

Grabowski, Wiesław, Transportation problem with minimization of time. (Polish. Russian, English summary) Przeglad Statyst 11 1964 333-359, MR0191644.

Hammer, Peter L., Time-minimizing transportation problems.Naval Res. Logist. Quart. 16 1969 345-357, MR0260422, https://doi.org/10.1002/nav.3800160307

Hammer, Peter L. Communication on: "The bottleneck transportation problem" and "Some remarks on the time transportation problem". Naval Res. Logist. Quart. 18 (1971), 487-490, MR0309559, https://doi.org/10.1002/nav.3800180406

A Janicki (1969): The Time Transportation Problem, M. S. Thesis, University of Wroclaw, Poland (in Polish).[12] P.L. Maggu, J. K. Sharma (1980): A Procedure for Time Minimizing Solid Transportation Problem, Pure Appl. Math. Sci., 12, (1-2), 19-27.

E.P. Niestierow (1962): Transportation Problems in Linear Programming, (Moskiw) 72-80 (in Russian).

Ramakrishnan, C. S., A note on the time minimising transportation problem. Op search 14 (1977), no. 3, 207-209, MR0459576.

Sharma, J. K., Swarup, Kanti, Time minimization in transportation problems. New Zealand Oper. Res. 6 (1978), no. 1, 75-88, MR0490681.

J.K. Sharma, K. Swarup (1977): The Time Minimization Multidimensional Transportation Problem, Journal of Eng. Production, 1, 121-129.

Sharma, J. K. A note on the time minimizing solid transportation problem. Pure Appl. Math. Sci. 7 (1978), no. 1-2, 41-42, JMR0462570.

Srinivasan, V., Thompson, G. L., Algorithms for minimizing total cost, bottleneck time and bottleneck shipment in transportation problems. Naval Res. Logist. Quart. 23 (1976), no. 4, 567-595, MR0446483, https://doi.org/10.1002/nav.3800230402

Stancu-Minasian, I. M., Programarea stocastică cu mai multe funcţii obiectiv. (Romanian) [Stochastic programming with multiple objective functions] With a preface by Marius Iosifescu. With an English summary. Editura Academiei Republicii Socialiste România, Bucharest, 1980. 259 pp., MR0575171.

Stancu-Minasian, I. M., Ţigan, Ştefan, The minimum risk approach to special problems of mathematical programming. The distribution function of the optimal value. Anal. Numér. Théor. Approx. 13 (1984), no. 2, 175-187, MR0797980.

Szwarc, Włodzimierz, Some remarks on the time transportation problem. Naval Res. Logist. Quart. 18 (1971), 473-485, MR0337298, https://doi.org/10.1002/nav.3800180405

W. Szwarc (1966): The Time Transportation Problem, Zastos. Mat., 8, 231-242, https://doi.org/10.4064/am-8-3-231-242

W. Szwarc (1965): Das Transportzeit problem, Mathekatik and Kybernetic in der Oekonomie, Academie Vargal Berlin, 19, 72-78.

W. Szwarc (1970): The Time Transportation Problem, Carnegie-Mellon Univeristy, Pittsburgh, Pennsylvania, Tehnical Report, No.201.

Ţigan, Ştefan, Sur un problème d'affectation. (French) Mathematica (Cluj) 11 (34) 1969 163-166, MR0266615.

U. Yechiali (1968): A Stochastic bottleneck Assignment Problem, Management Sci. 14 (11), 732-734.

Yechiali, Uri, A note on a stochastic production-maximizing transportation problem. Naval Res. Logist. Quart. 18 (1971), 429-431, MR0302156, https://doi.org/10.1002/nav.3800180313

Zimmermann, Uwe, Duality for algebraic linear programming. Linear Algebra Appl. 32 (1980), 9-31, MR0577903, https://doi.org/10.1016/0024-3795(80)90004-x

U. Zimmermann (1978): A Primal method for Solving Algebraic Transportation Problems Applied to the Bottlleneck Transportation Problem. Proc. of the Polish-Danish Mathematical Programming Seminar. Part one. Edited by J. Krarup and S. Walukiewicz. Warszawa, 139-153.

Downloads

Published

1985-08-01

How to Cite

Ţigan, Ştefan, & Stancu-Minasian, I. M. (1985). The stochastic bottleneck transportation problem. Anal. Numér. Théor. Approx., 14(2), 153–158. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1985-vol14-no2-art9

Issue

Section

Articles