On the monotonicity of sequences of Bernstein-Schnabl operators

Authors

  • I. Raşa Polytechnic Institute, Cluj-Napoca, Romania
Abstract views: 228

Abstract

Not available.

Downloads

Download data is not yet available.

References

Aramă, O. Propriétés concernant la monotonie de la suite des polynômes d'interpolation de S. N. Bernšteĭn et leur application à l'étude de l'approximation des fonctions. (Romanian) Acad. R. P. Romîne. Fil. Cluj. Stud. Cerc. Mat. 8(1957), pp. 195-210, MR0124674.

Grossman, Marvin W., Note on a generalized Bohman-Korovkin theorem. Math. Anal. Appl. 45 (1974), 43-46, MR0336171, https://doi.org/10.1016/0022-247x(74)90118-8

Reviewed Horová, Ivana Bernstein polynomials of convex functions. Mathematica (Cluj) 10 (33) (1968), 265-273, MR0246025.

Jakimovski, Amnon Generalized Bernstein polynomials for discontinuous and convex functions. J. Analyse Math. 23 (1970), pp. 171-183, MR0270033, https://doi.org/10.1007/bf02795498

Kosmák, Ladislav, A note on Bernstein polynomials of convex functions. Mathematica (Cluj) 2 (25) (1960), pp. 281-282, MR0125921.

Lupaş, Alexandru Some properties of the linear positive operators. III. Rev. Anal. Numér. Théorie Approximation 3 (1974), no. 1, pp. 47-61, MR0380204.

Moldovan, Elena, Observations sur la suite des polynomes de S. N. Bernstein d'une fonction continue. (French) Mathematica (Cluj) 4 (27)(1962), pp. 289-292, MR0164178.

Raşa, I. Sets on which concave functions are affine and Korovkin closures. Anal. Numér. Théor. Approx. 15 (1986), no. 2, pp. 163-165, MR0889526.

Raşa, I. Generalized Bernstein operators and convex functions. Studia Univ. Babeş-Bolyai Math. 33 (1988), no. 2, pp. 36-39, MR1004816.

Stancu, D. D. Application of divided differences to the study of monotonicity of the derivatives of the sequence of Bernšteĭn polynomials. Calcolo 16 (1979), no. 4, pp. 431-445 (1980), MR0592481, https://doi.org/10.1007/bf02576641

Temple, W. B. Stieltjes integral representation of convex functions. Duke Math. J. 21, (1954), pp. 527-531, MR0062815, https://doi.org/10.1215/s0012-7094-54-02152-3

Volkov, Yu. Ī. Multidimensional approximation operators generated by Lebesgue-Stieltjes measures. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 3, pp. 435-454, MR0703592.

Volkov, Yu. I., Monotonicity of sequences of positive linear operators generated by measures. (Russian) Mat. Zametki 38 (1985), no. 5, pp. 658-664, 795, MR0819623.

Ziegler, Zvi Linear approximation and generalized convexity. J. Approximation Theory 1 (1968), pp. 420-443, MR0240525, https://doi.org/10.1016/0021-9045(68)90031-2

Downloads

Published

1988-08-01

How to Cite

Raşa, I. (1988). On the monotonicity of sequences of Bernstein-Schnabl operators. Anal. Numér. Théor. Approx., 17(2), 185–187. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1988-vol17-no2-art12

Issue

Section

Articles