On quadratic equations

Authors

  • Ioannis K. Argyros New Mexico, USA
Abstract views: 195

Abstract

Not available.

Downloads

Download data is not yet available.

References

Ioannis K. Argyros, Quadratic equations and applications to Chandrasekhar's and related equations. Bull. Austral. Math. Soc. 32 (1985), no. 2, 275-292, MR0815369, https://doi.org/10.1017/s0004972700009953

I. K. Argyros, On a class of nonlinear integral equations arising in neutron transport, Aequationes Matyhematicae, 35 (1988), pp. 29-49.

Baruch Cahlon, Numerical solution of nonlinear Volterra integral equations. J. Comput. Appl. Math. 7 (1981), no. 2, 121-128, MR0636006, https://doi.org/10.1016/0771-050x(81)90045-0

Kenneth M. Case, Paul F. Zweifel, Linear transport theory. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1967 ix+342 pp., MR0225547.

S. Chandrasekhar, Radiative transfer. Dover Publications, Inc., New York 1960 xiv+393 pp., MR0111583.

C.T. Kelley, Solution of the Chandrasekhar H-equation by Newton's method. J. Math. Phys. 21 (1980), no. 7, 1625-1628, MR0575595, https://doi.org/10.1063/1.524647

C. Kuratowski, Sur les espaces complets, Fund. Math., 15 (1930), pp. 301-309.

R. W. Legget, On certain nonlinear integral equations, J. Math. Anal. Appl., 57 (1977), pp. 462-468. (1930), pp. 301-309, https://doi.org/10.1016/0022-247x(77)90272-4

J. E. McFarland, An iterative solution of the quadratic equation in Banach space. Proc. Amer. Math. Soc. 9 1958, pp. 824-830, MR0096147, https://doi.org/10.1090/s0002-9939-1958-0096147-8

L. B. Rall, Quadratic equations in Banach spaces. Rend. Circ. Mat. Palermo (2) 10 1961 314-332, MR0144184, https://doi.org/10.1007/bf02843677

L. B. Rall, Computational solution of nonlinear operator equations, John Wiley Publ., New York, 1968.

Downloads

Published

1989-02-01

Issue

Section

Articles

How to Cite

Argyros, I. K. (1989). On quadratic equations. Anal. Numér. Théor. Approx., 18(1), 19-26. https://ictp.acad.ro/jnaat/journal/article/view/1989-vol18-no1-art3