Approximation of continuous set-valued functions in Fréchet spaces I

Authors

  • Michele Campiti Universita degli Bari Study di Bari, Italy

Abstract

Not available.

Downloads

Download data is not yet available.

References

Aubin, J.P. and Cellina, A., Differential inclusions, Grundlehren der mathematischen Wissenschaften, 264, Springer-Verlag, 1984.

Campiti, M., A Korovkin-type theorem for set-valued Hausdorff continuous functions Le Mathematiche, Vol.XLII (1987), Fasc. I-II, 29-35.

Keimel, K. and Roth, W., A Korovkin type approixmation theorem for set-valued functions, Proc. Amer. Math. Soc.,104, (1988), 819-823, https://doi.org/10.1090/s0002-9939-1988-0964863-8

Keimel, K. and Roth, W., Ordered cones and approximation, preprint Technische Hochschule Darmstadt, part. I, II, III, IV, 1988-89.

Michael, E., Continuous selections, I, Ann. Math., 63, (1956), 2, 361-382, https://doi.org/10.2307/1969615

Vitale, R.S., Approximation of convex set-valued functions, J. Approx. theory 26 (1979) 4, 301-316, https://doi.org/10.1016/0021-9045(79)90067-4

Downloads

Published

1991-08-01

Issue

Section

Articles

How to Cite

Campiti, M. (1991). Approximation of continuous set-valued functions in Fréchet spaces I. Anal. Numér. Théor. Approx., 20(1), 15-23. https://ictp.acad.ro/jnaat/journal/article/view/1991-vol20-nos1-2-art3