Approximation of continuous set-valued functions in Fréchet spaces I
Abstract
Not available.Downloads
References
Aubin, J.P. and Cellina, A., Differential inclusions, Grundlehren der mathematischen Wissenschaften, 264, Springer-Verlag, 1984.
Campiti, M., A Korovkin-type theorem for set-valued Hausdorff continuous functions Le Mathematiche, Vol.XLII (1987), Fasc. I-II, 29-35.
Keimel, K. and Roth, W., A Korovkin type approixmation theorem for set-valued functions, Proc. Amer. Math. Soc.,104, (1988), 819-823, https://doi.org/10.1090/s0002-9939-1988-0964863-8
Keimel, K. and Roth, W., Ordered cones and approximation, preprint Technische Hochschule Darmstadt, part. I, II, III, IV, 1988-89.
Michael, E., Continuous selections, I, Ann. Math., 63, (1956), 2, 361-382, https://doi.org/10.2307/1969615
Vitale, R.S., Approximation of convex set-valued functions, J. Approx. theory 26 (1979) 4, 301-316, https://doi.org/10.1016/0021-9045(79)90067-4
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.