Some remarks on means
Abstract
Not available.Downloads
References
Allasia, G., Su una classe di algoritmi iterativi bidimensionali, Rend. Sem. Mat. Univ Torino, 29, (1969-70), 269-296.
Allasia, G., Una generalizzazione della disugualianza di Liapounoff, Rend. Sem. Mat.Univ. Politech. Torino, 33 (1974-75), 213-222.
Alzer, H., Ungleichungen für Mittelwerte, Arch. Math. 47 (1986), 422-426, https://doi.org/10.1007/bf01189983
Alzer, H., Two inequalities for means, C.R. Math. Rep. Acad. Sci. Canada, IX (1987), 11-16.
Andreoli, G., Medie e loro processi iterativi, Giornale Matem. Battaglini, (5), 85 (1957), 52-79.
Bauer, H., A class of means and related inequalities, manuscripta Math., 55 (1986), 199-212, https://doi.org/10.1007/bf01168685
Borwein, J.M., Borwein, P.R., The way of all means, Amer. Math. Monthly, 94 (1987), 519-522, https://doi.org/10.2307/2322842
Brenneer, J.L., Mays, M.E., Some reproducing identities for families of mean values, Aequat. Math., 33 (1987), 106-113, https://doi.org/10.1007/bf01836156
Bullen, P.S., Mitrinović, D.S., Vasić, P.M., Means and their inequalities, D. Reidel Publ. Comp., Dordrecht, 1988, https://doi.org/10.1007/978-94-017-2226-1
Burrows, B.L., Talbot, R.F., Wchich mean do you mean?, Int. J. Math. Educ.Sci. Technol., 17 (1986), 275-284, https://doi.org/10.1080/0020739860170303
Carlson, B.C., Algorithms involving arithmetic and geometric means, Amer. Math. Monthly, 78 (1971), 496-505, https://doi.org/10.1080/00029890.1971.11992791
Carlson, B.C., The logarithmic mean, Amer. Math. Monthly, 79 (1972), 615-618, https://doi.org/10.1080/00029890.1972.11993095
Carlson, B.C., Gustafson, J.L., Total positivity of mean values and hypergeomtric functions, SIAM J. Math. Anal., 14 (1983), 389-395, https://doi.org/10.1137/0514030
Foster, D.M.E., Phillips, G.M., A generalization of the Archimedean double sequence, J. Math. Anal. Appl. 101 (1984), 575-581, https://doi.org/10.1016/0022-247x(84)90121-5
Foster, D.M.E., Phillips, G.M., The arithmetic-harmonic meanc Math. Comp.,42 (1984), 183-191, https://doi.org/10.1090/s0025-5718-1984-0725993-3
Foster, D.M., General compound means, Res. Notes Math., 133 (1985), 56-65.
Foster, D.M.E., Phillips, G.M., Double mean processes, J The Institute of Math. and its Appl., 22 (1986), 127-173.
Hardy, G.H., Littlewood, J.E., Polya, G., Inequalities,Cambridge, 1934.
Lagrange, J.-L., Sur une nouvbelle methode de calcul integral, Mem. l'Acad. Roy. Sci. turin., 2 (1784-1785), ceuvres, t. 2, Paris, 1868.
Leach, E.B., Sholander, M.C., Extended mean values II, J. Math. Anal. Appl., 92 (1983), 207-223, https://doi.org/10.1016/0022-247x(83)90280-9
Lin, T.P., The power mean and the logarithmic mea, Amer. Math. Monthly, 81 (1974), 879-883, https://doi.org/10.1080/00029890.1974.11993684
Mays, M.E., Functions which parametrize means, Amer. Math., 90 (1983), 677-683, https://doi.org/10.1080/00029890.1983.11971312
Mitrinović, D.S., Pečarić, J.E., Srednje vrednosti u matematici, Naučna Knjiga, Beograd, 1989.
Moskovitz, D., An alignment chart for various means, Amer. Math. Monthly, 40 (1933), 592-596, https://doi.org/10.2307/2301685
Myrberg, P.J., Sur une géneralisation de la moyenne arithmetique-géométrique de Gauss, C.R. Acad. Sc. Paris, 246 (1958), 3201-3204.
Pietra, G., Di una formula per il calcolo delle medie combinatorie, Attn. Soc. Prog. Sci., 27 (1939), 5, 38-45.
Pittenger, A.O., Inequalities between arithmetic and logarithmic means, Univ. Beograd. Publ. Elektro. Fak., 678-715 (1980), 15-18.
Sándor, J., Toader, Gh., On some exponential means, "Babeş-Bolyai" Univ.Preprint 7 (1990), (35-40).
Schoenberg, I.J., Mathematical time exposures, The Math. Assoc. of America, 1982.
Stolarsky, K.B., Generalizations of the logarithmic mean, Math. Magazine, 48 (1975), 87-92, https://doi.org/10.1080/0025570x.1975.11976447
Toader, Gh., Complex generalized means, First Nat. Symp. "Realizări şi perspective în domeniul traductoarelor", Cluj, 1986, III, 46-49.
Toader, Gh., Generalized means and double sequences, Studia Univ. "Babeş-Bolyai", Math. 32 (1987), 3, 77-80.
Toader, Gh., On the rate of convergence of double sequences, "Babeş-Bolyai" Univ., Preprint 9 (1987), 123-128.
Toader, Gh., Generalized double sequences, Anal.Numér. Theor. Approx.16 (1987), 81-85.
Toader, Gh., Mean value theorems and means, Nat. Conf. Appl. Math. Mechan., Cluj-Napoca, 1988, 225-230.
Toader, Gh., An exponential mean, "Victor-Babeş" Univ., Preprint 7 (1988), 51-54.
Toader, Gh., A generalization of geometric and harmonic meanc, "Babeş-Bolyai", Univ., Preprint 7 (1989), 21-28.
Toader, Gh., On bidimensional iteration algorithms, "Babeş-Bolyai" Univ., Preprint 6 (1990), (to appear).
Toader, Gh., On the convergence of double sequences, Second Nat. Conf. Appl. Math. Mech., Cluj-Napoca, 1990, (to appear).
Tricomi, F.G., Sulle combinazioni lineari delle tre classiche medie, Atti Acc. Sci. Torino, 104 (1970), 557-572.
Tricomi, F.G., Sugli algoritmi iterativi nell'analisi numerica, Convegno Intern., Accad. Nat.Lincei, CCLXXII (1975), 105-117.
Wimp, J., Multidimensional iteration algorithms, Rend. Sem. Mat. Univ. Politec. Torino Fasc. Spec. 1985, 319-334.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.