On Gonska's problem concerning approximation by algebraic polynomials

Authors

  • Ioan Gavrea Technical University, Cluj-Napoca, Romania

Abstract

Not available.

Downloads

Download data is not yet available.

References

Cao, J.D. and Gonska, H.H., Approximation by Boolean Sums of Positive Linear Operators III, Estimates for some Numerical Approximation Schemes, Numer. Funct. Anal. and Optimiz., 10 (7 & 8), 1989.

Bernstein, S., Sur le s polynômes orthogonaux relatifs à un segment fini, Journ. Math.pures et appl., 10 (1931), pp. 219-286.

Gonska, H.H., Quantitative Korovkin Type Theorems on Simultaneous Approximation, Math. Z. 186, (1984), pp. 419-433, https://doi.org/10.1007/bf01174895

Lupaş, A. and Mache, D.H., The Degree of Approximation by a Class of Linear Positive Operators, Preprint Nr.108 (1992), Universität Dortmund.

Mitrinovič, D.S. and Vasič, P.M., Analytic Inequalities, Springer-Verlag, Berlin, Heidelberg, New York, 1970, https://doi.org/10.1007/978-3-642-99970-3

Popoviciu, T., Über die Konnvergenz von Folgen Positiver Operatoren, An. Sti. Univ. Al. I. Cuza" Iaşi (N.S.) 17 (1971), pp. 123-132.

Timan, A.F., Strengthening of Jakson's Theorem on Best Approximation of Continuous Fucntions Given on a Finite Interval of The Real Axis, Dokl, Akad. Hauk SSSR 78 (1951) (Russian), pp. 17-20.

Downloads

Published

1993-02-01

Issue

Section

Articles

How to Cite

Gavrea, I. (1993). On Gonska’s problem concerning approximation by algebraic polynomials. Rev. Anal. Numér. Théor. Approx., 22(1), 53-57. https://ictp.acad.ro/jnaat/journal/article/view/1993-vol22-no1-art4