A convergence analysis of an iterative algorithm of order \(1.839\ldots\) under weak assumptions

Authors

  • Ioannis K. Argyros Cameron University, Lawton, USA

DOI:

https://doi.org/10.33993/jnaat322-741

Keywords:

Banach space, majorizing sequence, Halley method, Euler-Chebyshev method, divided differences of order one and two, Fréchet-derivative, \(R\)-order of convergence, convergence radius
Abstract views: 238

Abstract

We provide new and weaker sufficient local and semilocal conditions for the convergence of a certain iterative method of order 1.839\(\ldots\) to a solution of an equation in a Banach space. The new idea is to use center-Lipschitz/Lipschitz conditions instead of just Lipschitz conditions on the divided differences of the operator involved. This way we obtain finer error bounds and a better information on the location of the solution under weaker assumptions than before.

Downloads

Download data is not yet available.

References

Argyros, I. K., Convergence results for the super Halley method using divided differences, Functiones et approximatio, commentarii mathematiki, XXIII, pp. 109-122, 1994.

Argyros, I. K., On the super Halley method using divided differences, Appl. Math. Letters, 10, no. 4, pp. 91-95, 1997, https://doi.org/10.1016/S0893-9659(97)00065-7. DOI: https://doi.org/10.1016/S0893-9659(97)00065-7

Argyros, I. K., On the monotone convergence of an Euler--Chebyshev-type method in partially ordered topological spaces, Rev. Anal. Numér. Théor. Approx., 27, no. 1, pp. 23-31, 1998, http://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art4

Argyros, I. K. and Szidarovszky, F., The Theory and Applications of Iteration Methods, C.R.C. Press, Boca Raton, Florida, 1993.

Brent, R. P., Algorithms for Minimization without Derivatives, Prentice Hall, Englewood Cliffs, NJ, 1973.

Ezquérro, J. A., Gutiérrez, J. M., Hernández, M. A. and Salanova, M. A., Solving nonlinear integral equations arising in radiative transfer, Numer. Funct. Anal. Optimiz., 20, nos. 7 and 8, pp. 661-673, 1999, https://doi.org/10.1080/01630569908816917. DOI: https://doi.org/10.1080/01630569908816917

Hernández, M. A., Rubio, M. J. and Ezquérro, J. A., Secant-like methods for solving nonlinear equations of the Hammerstein type, J. Comput. Appl. Math., 115, pp. 245-254, 2000, https://doi.org/10.1016/S0377-0427(99)00116-8. DOI: https://doi.org/10.1016/S0377-0427(99)00116-8

Kantorovich, L. V. and Akilov, G. P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1964.

King, R. F., An improved Pegasus method for root finding, BIT, 13, pp. 423-427, 1973, https://doi.org/10.1007/BF01933405. DOI: https://doi.org/10.1007/BF01933405

Mertvecova, M. A., An analog of the process of tangent hyperbolas for general functional equations, Dokl. Akad. Nauk SSSR, 88, pp. 611-614, 1953 (in Russian).

Necepurenko, M. T., On Chebyshev's method for functional equations, Usephi Mat. Nauk., 9, pp. 1673-170, 1954 (in Russian).

Potra, F. A., On an iterative algorithm of order 1.839… for solving nonlinear operator equations, Numer. Funct. Anal. Optimiz., 7, no. 1, pp. 75-106, 1984-85, https://doi.org/10.1080/01630568508816182. DOI: https://doi.org/10.1080/01630568508816182

Ul'm, S., Iteration methods with divided differences of the second order, Dokl. Akad. Nauk. SSSR, 158, pp. 55--58, 1964; Soviet Math. Dokl., 5, pp. 1187-1190 (in Russian).

Downloads

Published

2003-08-01

How to Cite

Argyros, I. K. (2003). A convergence analysis of an iterative algorithm of order \(1.839\ldots\) under weak assumptions. Rev. Anal. Numér. Théor. Approx., 32(2), 123–134. https://doi.org/10.33993/jnaat322-741

Issue

Section

Articles