Antiproximinal sets in Banach spaces of continuous functions
Abstract
Not available.
Downloads
References
Amir, D., Continuous functions' spaces with the bounded extension property. Bull. Res. Council Israel Sect. F 10F 1962 133-138 (1962), MR0143026.
S. Cobzas - (in Russian).
Danford, N., Švarc, Dž., Lineĭnye operatory. Chast' I: Obshchaya teoriya. (Russian) [Linear operators. Part I: General theory] Izdat. Inostran. Lit., Moscow 1962 895 pp., MR0216303.
Edelstein, M., Thompson, A. C., Some results on nearest points and support properties of convex sets in c0. Pacific J. Math. 40 (1972), 553-560, MR0308741, https://doi.org/10.2140/pjm.1972.40.553
Holmes, Richard B., A course on optimization and best approximation. Lecture Notes in Mathematics, Vol. 257. Springer-Verlag, Berlin-New York, 1972. viii+233 pp., MR0420367.
Klee, Victor, Remarks on nearest points in normed linear spaces. 1967 Proc. Colloquium on Convexity (Copenhagen, 1965) pp. 168-176 Kobenhavns Univ. Mat. Inst., Copenhagen, MR0223859.
Phelps, R. R., Some subreflexive Banach spaces. Arch. Math. 10 1959 162-169, MR0107162, https://doi.org/10.1007/bf01240781
Semadeni, Zbigniew, Banach spaces of continuous functions. Vol. I. Monografie Matematyczne, Tom 55. PWN---Polish Scientific Publishers, Warsaw, 1971. 584 pp. (errata insert)., MR0296671.
Sierpiński,W., Cardinal and ordinal numbers. Second revised edition. Monografie Matematyczne, Vol. 34 Państowe Wydawnictwo Naukowe, Warsaw 1965 491 pp., MR0194339.
Singer, Ivan, Bases in Banach spaces. I. Die Grundlehren der mathematischen Wissenschaften, Band 154. Springer-Verlag, New York-Berlin, 1970. viii+668 pp., MR0298399.
(in Russian)
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.