Some procedures for solving special max-min fractional rank-two reverse-convex programming problems
DOI:
https://doi.org/10.33993/jnaat332-772Keywords:
reverse-convex programming, max-min programming, bilinear fractional programs, linear fractional max-min programsAbstract
In this paper we suggest some procedures for solving two special classes of \(\max\)-\(\min\) fractional reverse-convex programs. We show that a special bilinear fractional max-min reverse-convex program can be solved by a linear reverse-convex programming problem. For a linear fractional max-min reverse-convex program, possessing two reverse-convex sets, we propose a parametrical method. The particularity of this procedure is the fact that the max-min optimal solution of the original problem is obtained by solving at each iteration two linear reverse-convex programs with a rank-two monotonicity property.Downloads
References
Charnes, A., Cooper, W.W., Programming with linear fractional functionals, Naval Res. Logist. Quart., 9, 1-2, pp. 181-186, 1962, https://doi.org/10.1002/nav.3800090303 DOI: https://doi.org/10.1002/nav.3800090303
Crouzeix, J.P., Ferland, J.A. and Schaible, S., An algorithm for generalized fractional programs, J. Optim. Theory Appl., 47, 1, pp. 35-49, 1985, https://doi.org/10.1007/bf00941314 DOI: https://doi.org/10.1007/BF00941314
Golstein, E.G., Duality theory in mathematical programming and its applications, Nauka, Moskva, 1971 (in Russian).
Hillestad, R.J., Jacobsen S.E., Linear programs with an additional reverse-convex constraint, Applied Mathematics and Optimization, 6, pp. 257-269, 1980, https://doi.org/10.1007/BF01442898. DOI: https://doi.org/10.1007/BF01442898
Ionac, D., Aspecte privind analiza unor probleme de programare matematică, ed. Treira, Oradea, 2000 (in Romanian).
Ionac, D. and Tigan, S., Solving procedures for some max-min reverse-convex programs, Proc. of the "Tiberiu Popoviciu" Itinerant Seminar on functional Equations, Approximation and Convexity, Editura SRIMA, Cluj-Napoca, Romania, pp. 105-118, 2002.
Kuno, T., Globally determining a minimum area rectangle enclosing the projection of a higher-dimensional set, Operations Research Letters, 13, pp. 295-303, 1993, https://doi.org/10.1016/0167-6377(93)90052-i DOI: https://doi.org/10.1016/0167-6377(93)90052-I
Kuno, T. and Yamamoto Y., A finite algorithm for globally optimizing a class of rank-two reverse-convex programming, Journal of Global Optimization, 12, 3, pp. 247-265, 1998, https://doi.org/10.1023/a:1008216024699 DOI: https://doi.org/10.1023/A:1008216024699
Penot, J.-P., Duality for anticonvex programs, Journal of Global Optimization, 19, pp. 163-182, 2001, https://doi.org/10.1023/a:1008327614099 DOI: https://doi.org/10.1023/A:1008327614099
Pferschy, U. and Tuy, H., Linear programs with an additional rank-two reverse-convex constraint, Journal of Global Optimization, 4, pp. 441-454, 1994, https://doi.org/10.1007/bf01099268 DOI: https://doi.org/10.1007/BF01099268
Schaible, S., Nonlinear fractional programming, Oper. Res. Verfahren, 19, pp. 109-115, 1974.
Stancu-Minasian, I.M., Fractional Programming Theory, Methods and Applications, Kluwer Academic Publishers, Dordrecht, 1997, https://doi.org/10.1007/978-94-009-0035-6_2 DOI: https://doi.org/10.1007/978-94-009-0035-6_2
Tigan, S., Sur une methode de resolution d'un problème d'optimisation par segments, Rev. Anal. Numér. Théor. Approx., 4, no. 1, pp. 87-97, 1975, http://ictp.acad.ro/jnaat/journal/article/view/1975-vol4-no1-art11
Tigan, S., On the max-min nonlinear fractional problem, Rev. Anal. Numér. Théor. Approx., 9, no. 2, pp. 283-288, 1980, http://ictp.acad.ro/jnaat/journal/article/view/1980-vol9-no2-art14
Tigan, S., A parametrical method for max-min nonlinear fractional problems, Proc. of the Itinerant Seminar on functional Equations, Approximation and Convexity, "Babeş-Bolyai" University, Cluj-Napoca, pp. 175-184, 1983.
Tigan, S., Asupra unor probleme fracţionare de maximin, Studii şi Cercetări de Calcul Economic şi Calcul Economic, 1-2, pp. 53-57, 1992.
Tigan, S. and Stancu-Minasian, I.M., Methods for solving stochastic bilinear fractional max-min problems, Recherche Opérationnelle / Operations Research, 30, no. 1, pp. 81-98, 1996, https://doi.org/10.1051/ro/1996300100811 DOI: https://doi.org/10.1051/ro/1996300100811
Tuy, H., Convex programs with an additional reverse-convex constraint, Journal of Optimization Theory and Applications, 52, pp. 463-486, 1987, https://doi.org/10.1007/bf00938217 DOI: https://doi.org/10.1007/BF00938217
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.