Self-similar sets in convex metric spaces
DOI:
https://doi.org/10.33993/jnaat332-776Keywords:
self-similar set, generalized contraction, convex metric spaceAbstract
The purpose of this paper is to present some existence and uniqueness results for self-similar sets in convex complete metric spaces.Downloads
References
Dugundji, J. and Granas, A., Fixed point theory, P. W. N. Warszawa, 1982.
Jachymski, J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 194, pp. 293-303, 1995, https://doi.org/10.1006/jmaa.1995.1299 DOI: https://doi.org/10.1006/jmaa.1995.1299
Meir, A. and Keeler, E., A theorem on contraction mappings, J. Math. Anal. Appl., 28, pp. 326-329, 1969, https://doi.org/10.1016/0022-247x(69)90031-6 DOI: https://doi.org/10.1016/0022-247X(69)90031-6
Matkowski, J. and Wegrzyk, R., On equivalence of some fixed point theorems for self mappings of metrically convex space, Boll. U. M. I., 15-A, pp. 359-369, 1978.
Moţ, G., Tipuri de convexitate în matematica modernă. Aplicaţii ale teoriei alurii, Editura Mirton, Timişoara, 1999 (in Romanian).
Nadler, S. B., Jr., Multivalued contraction mappings, Pacific J. Math., 30, pp.475-488, 1969, https://doi.org/10.2140/pjm.1969.30.475 DOI: https://doi.org/10.2140/pjm.1969.30.475
Petruşel, A., Single-valued and multi-valued Meir-Keeler type operators, Rev. Anal. Numér Théor. Approx., 30, pp. 75-80, 2001, http://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no1-art10
Petruşel, A., Dynamical systems, fixed points and fractals, Pure Math. Appl., 13, pp. 275-281, 2002.
Petruşel, A., Multi-funcţii şi aplicaţii, Cluj University Press, Cluj-Napoca, 2001 (in Romanian).
Petruşel, A., Operatorial inclusions, House of the Book of Science, Cluj-Napoca, 2002.
Rus, I. A., Generalized contractions, Cluj University Press, Cluj-Napoca, 2001.
Wegrzyk, R., Fixed point theorems for multivalued functions and their applications to functional equations, Dissertationes Math., 201, pp. 1-30, 1986.
Yamaguti, M., Hata, M. and Kigani, J., Mathematics of Fractals, Translations Math. Monograph, vol. 167, AMS Providence, Rhode Island 1997, https://doi.org/10.1090/mmono/167 DOI: https://doi.org/10.1090/mmono/167
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.