An improved semilocal convergence analysis for the midpoint method
DOI:
https://doi.org/10.33993/jnaat452-1104Keywords:
midpoint method, semilocal convergence, majorizing sequence, Banach space, Frechet derivativeAbstract
We expand the applicability of the midpoint method for approximating a locally unique solution of nonlinear equations in a Banach space setting. Our majorizing sequences are finer than the known results in scientific literature [1,3,4,5,6,7,8,9,10,11,19,20,21,23] and the convergence criteria can be weaker. Finally, numerical work is reported that compares favorably to the existing approaches in the literature [6, 8-16, 24-26,28].
Downloads
References
S. Amat, C. Bermudez, S. Busquier, M. J. Legaz, S. Plaza, On a family of high-order iterative methods under Kantorovich conditions and some applications, Abstract and Applied Analysis, 2012 (2012), Article ID 782170, 14 pp., http://dx.doi.org/10.1155/2012/782170 DOI: https://doi.org/10.1155/2012/782170
S. Amat, C. Bermudez, S. Busquier, S. Plaza, On a third-order Newton-type method free of bilinear operators, Num. Lin. Alg. Appl., 17 (2010) no. 4, pp. 639-653, http://dx.doi.org/10.1002/nla.654 DOI: https://doi.org/10.1002/nla.654
S. Amat, S. Busquier, Third-order iterative methods under Kantorovich conditions, J. Math. Anal. Appl., 336 (2007) no. 1, 243-261, http://dx.doi.org/10.1016/j.jmaa.2007.02.052 DOI: https://doi.org/10.1016/j.jmaa.2007.02.052
S. Amat, S. Busquier, J.M. Gutierrez, Third-order iterative methods with applications to Hammerstein equations: A unified approach, J. Comp. Appl. Math., 235 (2011) no. 9, 2936-2943, http://dx.doi.org/10.1016/j.cam.2010.12.011 DOI: https://doi.org/10.1016/j.cam.2010.12.011
I.K. Argyros, D. Chen, The midpoint method for solving nonlinear operator equations in Banach space, Appl. Math. Lett., 5 (1992), pp. 7-9, http://dx.doi.org/10.1016/0893-9659(92)90076-L DOI: https://doi.org/10.1016/0893-9659(92)90076-L
I.K. Argyros, D. Chen, The midpoint method in Banach spaces and the Ptak error estimates, Appl. Math. Comp., 62 (1994), 1-15, http://dx.doi.org/10.1016/0096-3003(94)90129-5 DOI: https://doi.org/10.1016/0096-3003(94)90129-5
I.K. Argyros, D. Chen, On the midpoint iterative method for solving nonlinear operator equations in Banach space and its applications in integral equations, Rev. Anal. Numer. Theor. Approx. 23 (1994), 139-152, http://ictp.acad.ro/jnaat/journal/article/view/1994-vol23-no2-art3
I.K. Argyros, Y.J. Cho, S. Hilout, On the midpoint method for solving equations, Appl. Math. Comput., 216 (2010), 2321-2332, http://dx.doi.org/10.1016/j.amc.2010.03.076 DOI: https://doi.org/10.1016/j.amc.2010.03.076
I.K. Argyros, S. Hilout, On the semilocal convergence of a Newton-type method of order three, J. Korea S. M. A. Ser. B.Pure and Appl. Math., 17 (2010), 1-27.
I.K. Argyros, The convergence of a Hal ley-Chebysheff-type method under Newton-Kantorovich hypotheses, Appl. Math. Lett., 6 (1993) no. 5, 71-74, http://dx.doi.org/10.1016/0893-9659(93)90104-U DOI: https://doi.org/10.1016/0893-9659(93)90104-U
I.K. Argyros, D. Chen, Results on the Chebyshev method in Banach spaces, Proyecciones, 12 (1993), 119-128. DOI: https://doi.org/10.22199/S07160917.1993.0002.00002
I.K. Argyros, On the convergence of an Euler-Chebysheff-type method under Newton-Kantorovich hypotheses, Pure Mathematics and Applications, 4 (1993) no. 3, 369-373.
I.K. Argyros, D. Chen, Q.S. Qian, A note on the Halley method in Banach spaces, Appl. Math. Comput., 58 (1993), 215-224, http://dx.doi.org/10.1016/0096-3003(93)90137-4 DOI: https://doi.org/10.1016/0096-3003(93)90137-4
I.K. Argyros, D. Chen, Q.S. Qian, Error bound representations of Chebyshev-Halley type methods in Banach spaces, Rev. Academia de Ciencias Zaragoza, 49 (1994), 57-69.
I.K. Argyros, On the method of tangent hyperbolas, Approximation Theory and its Applications, 12 (1996), 78-95.
I.K. Argyros, On the method of tangent parabolas, Functiones et Approximatio Commentarii Mathematici, (1996), 3-15.
I.K. Argyros, The super-Halley method using divided differences, Appl. Math. Lett., 10 (1997) no. 4, 91-95, http://dx.doi.org/10.1016/S0893-9659(97)00065-7 DOI: https://doi.org/10.1016/S0893-9659(97)00065-7
I.K. Argyros, Chebysheff-Halley-like methods in Banach spaces, J. Appl. Math. Comput., 4 (1997) no. 1, 83–107. DOI: https://doi.org/10.1007/BF03011382
I.K. Argyros, On the monotone convergence of an Euler-Chebysheff-type method in partially ordered topological spaces, Rev. Anal. Numer. Theor. Approx., 27 (1998) no.1, 23-31, http://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art4
I.K. Argyros, Error bounds for the Chebyshev method in Banach spaces, Bulletin of the Institute of Mathematics Academia Sinica, 26 (1998) no. 4, 269-282.
I.K. Argyros, Improved error bounds for a Chebysheff-Hal ley-type method, Acta Mathematica Hungarica, 84 (1999) no. 3, 209-219. DOI: https://doi.org/10.1023/A:1006633119417
I.K. Argyros, J.A. Ezquerro, J.M. Gutierrez, M.A. Hernandez, S. Hilout, On the semilocal convergence of efficient Chebyshev-Secant-type methods , J. Comput. Appl. Math., 235 (2011) no. 10, 3195-3206. DOI: https://doi.org/10.1016/j.cam.2011.01.005
I.K. Argyros, Y.J. Cho, S. Hilout, Numerical Methods for Equations and Variational Inclusions, CRC Press/Taylor & Francis, 2012. DOI: https://doi.org/10.1201/b12297
J.A. Ezquerro, A modification of the Chebyshev method, IMA J. Numer. Anal., 17 (1997) no. 4, 511-525, http://dx.doi.org/10.1093/imanum/17.4.511 DOI: https://doi.org/10.1093/imanum/17.4.511
J.A. Ezquerro, J. M. Gutierrez, M. A. Hernandez, M. A. Salanova, Chebyshev-like methods and quadratic equations, Rev. Anal. Numer. Theor. Approx., 28 (1999) no. 1, 23-35, http://ictp.acad.ro/jnaat/journal/article/view/1999-vol28-no1-art3
J.A. Ezquerro, M.A. Hernandez, New Kantorovich-type conditions for Halley’s method, Appl. Numer. Anal. Comput. Math., 2 (2005) no. 1, 70-77, http://dx.doi.org/10.1002/anac.200410024 DOI: https://doi.org/10.1002/anac.200410024
E. Halley, A new, exact, and easy method of finding roots of any equations generally, and that without any previous reduction, Philos. Trans. Roy. Soc. London, 18 (1694), 136-145. DOI: https://doi.org/10.1098/rstl.1694.0029
M.A. Hernandez, Second-Derivative-Free Variant of the Chebyshev method for non-linear equations , J. Optim. Theory Appl., 104 (2000) no. 3, 501-515, http://dx.doi.org/10.1023/A:1004618223538 DOI: https://doi.org/10.1023/A:1004618223538
W. Werner, Some improvements of classical iterative methods for the solution of nonlinear equations, Numerical Solution of Nonlinear Equations Lecture Notes in Mathematics, 878/1981, (1981), 426-440, http://dx.doi.org/10.1007/bfb0090691 DOI: https://doi.org/10.1007/BFb0090691
V. Candela, A. Marquina, Recurrence relations for rational cubic methods II: The Chebyshev method, Computing, 45(1990) no. 4, 355-367, http://dx.doi.org/10.1007/BF02238803 DOI: https://doi.org/10.1007/BF02238803
S. Kanno, Convergence theorems for the method of tangent hyperbolas, Mathematica Japonica, 87 (1992) no. 4, 711-722.
A.M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces, Academic Press, New York, 3rd Ed., 1973.
T. Yamamoto, On the method of tangent hyperbolas in Banach spaces, J. Comput. Appl. Math., 21 (1988) no. 1, 75-86, http://dx.doi.org/10.1016/0377-0427(88)90389-5 DOI: https://doi.org/10.1016/0377-0427(88)90389-5
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.