The boundary element method - a review
Keywords:
boundary element method, Laplace equation, plane elastostaticsAbstract
Not available.Downloads
References
Jaswon, M. A., Ponter, A. R., An integral equation solution of the torsion problem. Proc. Roy. Soc. Ser. A 273 1963 237-246, MR0149729, https://doi.org/10.1098/rspa.1963.0085
Jaswon, M. A., Integral equation methods in potential theory. I. Proc. Roy. Soc. Ser. A 275 1963 23-32, MR0154075, https://doi.org/10.1098/rspa.1963.0152
Symm, G. T., Integral equation methods in potential theory. II. Proc. Roy. Soc. Ser. A 275 1963 33-46, MR0154076, https://doi.org/10.1098/rspa.1963.0153
Rizzo, F.J., An Integral Equation approach to Boundary Value problems of classical elastostatics, Quart. App. Math. Vol. XXV No.1. 1967, 83-95, https://doi.org/10.1090/qam/99907
Cruse, T.A. and Rizzo, F.J., A directo formulation and numerical solution of the general transient elastodynamic problem, I. J. Math. Anal. Appl. Vol. 22, 1968, 244-259, https://doi.org/10.1016/0022-247x(68)90171-6
Cruse, T.A., A direct formulation and numerical solution of the general transient elastodynamic problem II, J. Math. Anal. Appl. Vol. 22, 1968, 341-355, https://doi.org/10.1016/0022-247x(68)90177-7
Cruse, T.A., Numerical Solutions in three dimensional elastostatics, Int. J. Solids Structures 3, 1969, 1259-1274, https://doi.org/10.1016/0020-7683(69)90071-7
Banerjee, P.K. and Butterfield, R., Developments in Boundary Element Methods, 1979, Appl. Science Pubs.
Brebbia, C.A., New Developments in Boundary Element Methods, 1980, CML. Pubs. Southampton.
Proc. Second International Symposium on Innovative Numerical Analysis in Applied Engineering Sciences, 1980, Univ. Press Virginia.
Brebbia, C. A., The boundary element method for engineers. Halsted Press [John Wiley & Sons], New York, 1978. v+189 pp. ISBN: 0-470-26438-1, MR0502715.
Stroud, A. H.; Secrest, Don Gaussian quadrature formulas. Prentice-Hall, Inc., Englewood Cliffs, N.J. 1966 ix+374 pp., MR0202312.
Baker, Christopher T. H., The numerical treatment of integral equations. Monographs on Numerical Analysis. Clarendon Press, Oxford, 1977. xiv+1034 pp. ISBN: 0-19-853406-X, MR0467215.
Wendland, W. L., Stephan, E., Hsiao, G. C., On the integral equation method for the plane mixed boundary value problem of the Laplacian. Math. Methods Appl. Sci. 1 (1979), no. 3, 265-321, MR0548943, https://doi.org/10.1002/mma.1670010302
Watson, J.O., Hermitian Cubic Elements for plane Elastostatics, in [10], pp. 403-412.
Bhattacharya, P. K., Symm, G. T., A novel formulation and solution of the plane elastostatic displacement problem. Comput. Math. Appl. 6 (1980), no. 4, 443-448, MR0604107, https://doi.org/10.1016/0898-1221(80)90051-6
Ciarlet, P.G., The Finite Element Method for Elliptic Problems, 1978, North-Holland.
Love, A. E. H., A treatise on the Mathematical Theory of Elasticity. Fourth Ed. Dover Publications, New York, 1944. xviii+643 pp., MR0010851.
Cathie, D.N. and Banerjee, P.K., Numerical solutions in Axisymmetric Elastoplasticity by the Boundary Element Method, in 10, pp. 331-340.
Mukherjee, S., Applicatons of the Boundary Element Method in Time-Dependent Inelastic deformation, in 10, pp. 361-372.
Zienkiewicz, O. C., Kelly, D. W., Bettess, P., The coupling of the finite element method and boundary solution procedures. Internat. J. Numer. Methods Engrg. 11 (1977), no. 2, 355-375, MR0451784, https://doi.org/10.1002/nme.1620110210
Johnson, Claes, Nédélec, J.-Claude, On the coupling of boundary integral and finite element methods. Math. Comp. 35 (1980), no. 152, 1063-1079, MR0583487, https://doi.org/10.1090/s0025-5718-1980-0583487-9
Narayanan, G. V., Beskos, D. E., Numerical operational methods for time-dependent linear problems. Internat. J. Numer. Methods Engrg. 18 (1982), no. 12, 1829-1854, MR0685502, https://doi.org/10.1002/nme.1620181207
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.