On the multi-valued metric projection in normed vectors spaces II.

Authors

  • Ioan Şerb Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania
Abstract views: 169

Abstract

Not available.

Downloads

Download data is not yet available.

References

Asplund, Edgar, A k-extreme point is the limit of k-exposed points. Israel J. Math. 1 1963 161-162, MR0161222, https://doi.org/10.1007/bf02759703

Bohnenblust, H. F., Karlin, S., Geometrical properties of the unit sphere of Banach algebras. Ann. of Math. (2) 62 (1955), 217-229, MR0071733, https://doi.org/10.2307/1969676

Day, Mahlon M. Normed linear spaces. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21. Springer-Verlag, New York-Heidelberg, 1973. viii+211 pp., MR0344849.

Diestel, J., Uhl, J. J., Jr., The Radon-Nikodym theorem for Banach space valued measures. Rocky Mountain J. Math. 6 (1976), no. 1, 1-46, MR0399852, https://doi.org/10.1216/rmj-1976-6-1-1

Hewitt, E., Stromberg, K., Real and abstract analysis, Springer-Verlag New York Heidelberg Berlin, 1968.

Holmes, Richard B., Geometric functional analysis and its applications. Graduate Texts in Mathematics, No. 24. Springer-Verlag, New York-Heidelberg, 1975. x+246 pp., MR0410335, https://doi.org/10.1007/978-1-4684-9369-6

Huff, R. E., Morris, P. D., Geometric characterizations of the Radon-Nikodým property in Banach spaces. Studia Math. 56 (1976), no. 2, 157-164, MR0412776, https://doi.org/10.4064/sm-56-2-157-164

Konjagin, S. V., Approximation properties of arbitrary sets in Banach spaces. (Russian) Dokl. Akad. Nauk SSSR 239 (1978), no. 2, 261-264, MR0493113.

Lau, Ka Sing, On strongly exposing functionals. J. Austral. Math. Soc. Ser. A 21 (1976), no. 3, 362-367, MR0423049, https://doi.org/10.1017/s1446788700018656

Phelps, R. R., Dentability and extreme points in Banach spaces. J. Functional Analysis 17 (1974), 78-90, MR0352941, https://doi.org/10.1016/0022-1236(74)90005-6

Şerb, Ioan, On the multivalued metric projection in normed vector spaces. Anal. Numér. Théor. Approx. 10 (1981), no. 1, 101-111, MR0670640.

Şerb, Ioan, A normed space admitting countable multivalued metric projections. Seminar of Functional Analysis and Numerical Analysis, pp. 155-158, Preprint 1981, 4, Univ. "Babeş-Bolyai", Cluj-Napoca, 1981, MR0671751.

Şerb, Ioan, Normed spaces with bounded or compact strongly proximinal sets. Seminar of Functional Analysis and Numerical Analysis, pp. 159-167, Preprint 1981, 4, Univ. "Babeş-Bolyai", Cluj-Napoca, 1981, MR0671752.

Singer, Ivan, Cea mai bună aproximare în spaţii vectoriale normate prin elemente din subspaţii vectoriale. (Romanian) [Best approximation in normed vector spaces by elements of vector subspaces] Editura Academiei Republicii Socialiste România, Bucharest 1967 386 pp., MR0235368.

Stečkin, S. B. Approximation properties of sets in normed linear spaces. (Russian) Rev. Math. Pures Appl. 8 1963 5-18, MR0155168.

Downloads

Published

1982-08-01

How to Cite

Şerb, I. (1982). On the multi-valued metric projection in normed vectors spaces II. Anal. Numér. Théor. Approx., 11(1), 155–166. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1982-vol11-nos1-2-art19

Issue

Section

Articles