On the multi-valued metric projection in normed vectors spaces II.
Abstract
Not available.Downloads
References
Asplund, Edgar, A k-extreme point is the limit of k-exposed points. Israel J. Math. 1 1963 161-162, MR0161222, https://doi.org/10.1007/bf02759703
Bohnenblust, H. F., Karlin, S., Geometrical properties of the unit sphere of Banach algebras. Ann. of Math. (2) 62 (1955), 217-229, MR0071733, https://doi.org/10.2307/1969676
Day, Mahlon M. Normed linear spaces. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21. Springer-Verlag, New York-Heidelberg, 1973. viii+211 pp., MR0344849.
Diestel, J., Uhl, J. J., Jr., The Radon-Nikodym theorem for Banach space valued measures. Rocky Mountain J. Math. 6 (1976), no. 1, 1-46, MR0399852, https://doi.org/10.1216/rmj-1976-6-1-1
Hewitt, E., Stromberg, K., Real and abstract analysis, Springer-Verlag New York Heidelberg Berlin, 1968.
Holmes, Richard B., Geometric functional analysis and its applications. Graduate Texts in Mathematics, No. 24. Springer-Verlag, New York-Heidelberg, 1975. x+246 pp., MR0410335, https://doi.org/10.1007/978-1-4684-9369-6
Huff, R. E., Morris, P. D., Geometric characterizations of the Radon-Nikodým property in Banach spaces. Studia Math. 56 (1976), no. 2, 157-164, MR0412776, https://doi.org/10.4064/sm-56-2-157-164
Konjagin, S. V., Approximation properties of arbitrary sets in Banach spaces. (Russian) Dokl. Akad. Nauk SSSR 239 (1978), no. 2, 261-264, MR0493113.
Lau, Ka Sing, On strongly exposing functionals. J. Austral. Math. Soc. Ser. A 21 (1976), no. 3, 362-367, MR0423049, https://doi.org/10.1017/s1446788700018656
Phelps, R. R., Dentability and extreme points in Banach spaces. J. Functional Analysis 17 (1974), 78-90, MR0352941, https://doi.org/10.1016/0022-1236(74)90005-6
Şerb, Ioan, On the multivalued metric projection in normed vector spaces. Anal. Numér. Théor. Approx. 10 (1981), no. 1, 101-111, MR0670640.
Şerb, Ioan, A normed space admitting countable multivalued metric projections. Seminar of Functional Analysis and Numerical Analysis, pp. 155-158, Preprint 1981, 4, Univ. "Babeş-Bolyai", Cluj-Napoca, 1981, MR0671751.
Şerb, Ioan, Normed spaces with bounded or compact strongly proximinal sets. Seminar of Functional Analysis and Numerical Analysis, pp. 159-167, Preprint 1981, 4, Univ. "Babeş-Bolyai", Cluj-Napoca, 1981, MR0671752.
Singer, Ivan, Cea mai bună aproximare în spaţii vectoriale normate prin elemente din subspaţii vectoriale. (Romanian) [Best approximation in normed vector spaces by elements of vector subspaces] Editura Academiei Republicii Socialiste România, Bucharest 1967 386 pp., MR0235368.
Stečkin, S. B. Approximation properties of sets in normed linear spaces. (Russian) Rev. Math. Pures Appl. 8 1963 5-18, MR0155168.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.