Local convergence of some Newton-type methods for nonlinear systems
DOI:
https://doi.org/10.33993/jnaat332-778Keywords:
nonlinear systems of equationsAbstract
In order to approximate the solutions of nonlinear systems\[F(x)=0,\]with \(F:D\subseteq {\mathbb R}^{n}\rightarrow {\mathbb R}^{n}\),\(n\in {\Bbb N}\), we consider the method\begin{align*}x_{k+1} & =x_{k}-A_{k}F(x_{k})\label{f1.4}\\A_{k+1} & =A_{k}(2I-F^{\prime}(x_{k+1})A_{k}),\;k=0,1,..., \,A_{0}\in M_{n}({\Bbb R}), x_0 \in D,\end{align*}and we study its local convergence.Downloads
References
Cătinaş, E. and Păvăloiu, I., On approximating the eigenvalues and eigenvectors of linear continuous operators, Rev. Anal. Numér. Théor. Approx., 26, nos. 1-2, pp. 19-27, 1997, http://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art3
Diaconu, A., On the convergence of an iterative proceeding of Chebyshev type, Rev. Anal. Numér. Théor. Approx., 24, nos. 1-2, pp. 19-27, 1995, http://ictp.acad.ro/jnaat/journal/article/view/1995-vol24-nos1-2-art9
Diaconu, A. and Păvăloiu, I., Sur quelques méthodes itératives pour la résolution des equations opérationelles, Rev. Anal. Numér. Théor. Approx., 1, no. 1, pp. 45-61, 1972, http://ictp.acad.ro/jnaat/journal/article/view/1972-vol1-art3 DOI: https://doi.org/10.33993/jnaat11-3
Lazăr, I., On a Newton type method, Rev. Anal. Numér. Théor. Approx., 23, no. 2, pp. 167-174, 1994, http://ictp.acad.ro/jnaat/journal/article/view/1994-vol23-no2-art5
Păvăloiu, I., Introduction in the Theory of Approximating the Solutions of Equations, Ed. Dacia, Cluj-Napoca, 1976 (in Romanian).
Ulm, S., On the iterative method with simultaneous approximation of the inverse of the operator, Izv. Nauk. Estonskoi S.S.R., 16, no. 4, pp. 403-411, 1967.
Zehnder, J. E., A remark about Newton's method, Comm. Pure Appl. Math., 37, pp. 361-366, 1974 https://doi.org/10.1002/cpa.3160270305. DOI: https://doi.org/10.1002/cpa.3160270305
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.