In this paper we introduce a class of positive linear operators by using the “umbral calculus”, and we study some approximation properties of it.
Let \(Q\) be a delta operator, and \(S\) an invertible shift invariant operator.
For \(f\in C[0,1]\) we define \((L_{n}^{Q,S}f)(x)=\frac{1}{sn_{(1)}}\sum \limits_{k=0}^{n}\binomial{n}{k} p_{k}(x)s_{n-k}(1-x)f(\frac{k}{n})\), where \((p_{n})_{n\geq0}\) is a binomial sequence which is the basic sequence for \(Q\), and \((s_{n})_{n\geq0}\) is a Sheffer set, \(s_{n}=S^{-1}p_{n}\).
These operators generalize the binomial operators of T. Popoviciu.
Authors
Maria Craciun
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)
APPROXIMATION OPERATORS
CONSTRUCTED BY MEANS OF SHEFFER SEQUENCES
MARIA CRĂCIUN
Abstract
In this paper we introduce a class of positive linear operators by using the "umbral calculus", and we study some approximation properties of it. Let QQ be a delta operator, and SS an invertible shift invariant operator. For f in C[0,1]f \in C[0,1] we define (L_(n)^(Q,S)f)(x)=(1)/(s_(n)(1))sum_(k=0)^(n)((n)/(k))p_(k)(x)s_(n-k)(1-x)f((k)/(n)),\left(L_{n}^{Q, S} f\right)(x)=\frac{1}{s_{n}(1)} \sum_{k=0}^{n}\binom{n}{k} p_{k}(x) s_{n-k}(1-x) f\left(\frac{k}{n}\right), where (p_(n))_(n >= 0)\left(p_{n}\right)_{n \geq 0} is a binomial sequence which is the basic sequence for QQ, and (s_(n))_(n >= 0)\left(s_{n}\right)_{n \geq 0} is a Sheffer set, s_(n)=S^(-1)p_(n)s_{n}=S^{-1} p_{n}. These operators generalize the binomial operators of T. Popoviciu.
MSC 2000. 41A36, 05A40.
1. INTRODUCTION
Let PP be the linear space of all polynomials with real coefficients, and P_(n)P_{n} the linear space of all polynomials of degree at most nn.
We will consider some linear operators defined on PP. We will denote by II the identity and by DD the derivative. The shift operator E^(a):P rarr PE^{a}: P \rightarrow P is defined by E^(a)p(x)=p(x+a)E^{a} p(x)=p(x+a).
A linear operator TT which commutes with all shift operators is called a shift invariant operator. In symbols, E^(a)T=TE^(a)E^{a} T=T E^{a}, for all real aa.
Let us remind that if T_(1)T_{1} and T_(2)T_{2} are shift invariant operators, then T_(1)T_(2)=T_(2)T_(1)T_{1} T_{2}= T_{2} T_{1}.
Definition 1. A shift invariant operator for which Qx=Q x= const !=0\neq 0 is called a delta operator.
By a polynomial sequence we shall denote a sequence of polynomials p_(n)(x)p_{n}(x), n=0,1,2,dotsn=0,1,2, \ldots where p_(n)(x)p_{n}(x) is of degree exactly nn for all nn.
A sequence of binomial type is a polynomial sequence (p_(n))_(n >= 0)\left(p_{n}\right)_{n \geq 0} with p_(0)(x)=1p_{0}(x)=1 and satisfying the identities
for all x,yx, y and n=0,1,2,dotsn=0,1,2, \ldots.
Definition 2. Let QQ be a delta operator and (p_(n)(x))_(n >= 0)\left(p_{n}(x)\right)_{n \geq 0} a polynomial sequence. If
i) quadp_(0)(x)=1\quad p_{0}(x)=1,
ii) quadp_(n)(0)=0,n=1,2,dots\quad p_{n}(0)=0, n=1,2, \ldots,
iii) quad Qp_(n)=np_(n-1),n=1,2,dots\quad Q p_{n}=n p_{n-1}, n=1,2, \ldots,
then (p_(n))\left(p_{n}\right) is called the sequence of basic polynomials for QQ.
Proposition 1. 8].
i) Every delta operator has a unique sequence of basic polynomials.
ii) If p_(n)(x)p_{n}(x) is a basic sequence for some delta operator QQ, then it is binomial.
iii) If p_(n)(x)p_{n}(x) is a binomial sequence, then it is a basic sequence for some delta operator QQ.
Let XX be the multiplication operator defined as (Xp)(x)=xp(x)(X p)(x)=x p(x) for every polynomial pp.
For any operator TT defined on PP, the operator T^(')=TX-XTT^{\prime}=T X-X T is called the Pincherle derivative of the operator TT.
Proposition 2. 8].
i) If TT is a shift invariant operator, then its Pincherle derivative is also a shift invariant operator.
ii) If QQ is a delta operator, then its Pincherle derivative Q^(')Q^{\prime} is an invertible operator.
Proposition 3. [8], [11]. If (p_(n)(x))_(n >= 0)\left(p_{n}(x)\right)_{n \geq 0} is a sequence of basic polynomials for the delta operator QQ then
i) quadp_(n)(x)=X(Q^('))^(-1)p_(n-1)(x),n=1,2,dots\quad p_{n}(x)=X\left(Q^{\prime}\right)^{-1} p_{n-1}(x), n=1,2, \ldots,
ii) quadp_(n)(x)=xsum_(k=0)^(n-1)((n-1)/(k))p_(n-1-k)(x)p_(k+1)^(')(0),n=1,2,dots\quad p_{n}(x)=x \sum_{k=0}^{n-1}\binom{n-1}{k} p_{n-1-k}(x) p_{k+1}^{\prime}(0), n=1,2, \ldots
Definition 3. A polynomial sequence (s_(n)(x))_(n >= 0)\left(s_{n}(x)\right)_{n \geq 0} is called a Sheffer set relative to the delta operator QQ if:
i) quads_(0)(x)=\quad s_{0}(x)= const !=0\neq 0
ii) Qs_(n)=ns_(n-1),n=1,2,dotsQ s_{n}=n s_{n-1}, n=1,2, \ldots
An Appel set is a Sheffer set relative to the derivative DD.
Proposition 4. 11. Let QQ be a delta operator with basic polynomial set (p_(n)(x))_(n >= 0)\left(p_{n}(x)\right)_{n \geq 0} and (s_(n)(x))_(n >= 0)\left(s_{n}(x)\right)_{n \geq 0} a polynomial sequence. The next statements are equivalent:
i) s_(n)(x)s_{n}(x) is a Sheffer set relative to QQ.
ii) There exists an invertible shift invariant operator SS such that s_(n)(x)=S^(-1)p_(n)(x)s_{n}(x)= S^{-1} p_{n}(x).
iii) For all x,y inRx, y \in \mathbb{R} and n=0,1,2,dotsn=0,1,2, \ldots, the following identity holds:
where f in C[0,1]f \in C[0,1] and x in[0,1]x \in[0,1]. These operators are called binomial operators.
Such operators and their generalizations have been studied by the Romanian mathematicians as: D. D. Stancu, A. Lupaş, L. Lupaş, G. Moldovan, C. Manole, O. Agratini, A. Vernescu, and others.
Let QQ be a delta operator and SS an invertible shift invariant operator. Let (p_(n)(x))_(n >= 0)\left(p_{n}(x)\right)_{n \geq 0} be the sequence of basic polynomials for QQ, and (s_(n)(x))_(n >= 0)\left(s_{n}(x)\right)_{n \geq 0} a Sheffer set relative to Q,s_(n)=S^(-1)p_(n)Q, s_{n}=S^{-1} p_{n} with s_(n)(1)!=0s_{n}(1) \neq 0 for any positive integer nn.
In this note we want to study the operators L_(n)^(Q,S):C[0,1]rarr C[0,1]L_{n}^{Q, S}: C[0,1] \rightarrow C[0,1],
Because p_(k)(0)=delta_(k,0)p_{k}(0)=\delta_{k, 0} (from the definition of basic polynomials), we have (L_(n)^(Q,S)f)(0)=f(0)\left(L_{n}^{Q, S} f\right)(0)=f(0).
In order to evaluate expression (L_(n)^(Q,S)e_(m))(x)\left(L_{n}^{Q, S} e_{m}\right)(x), where e_(m)(x)=x^(m)e_{m}(x)=x^{m} we shall make use of C. Manole's method for binomial operators (see [5]) which we have adapted to our purposes.
Let us introduce the polynomials
{:(3)S_(m)(x","y","n)=sum_(k=0)^(n)((n)/(k))p_(k)(x)s_(n-k)(y)((k)/(n))^(m):}\begin{equation*}
S_{m}(x, y, n)=\sum_{k=0}^{n}\binom{n}{k} p_{k}(x) s_{n-k}(y)\left(\frac{k}{n}\right)^{m} \tag{3}
\end{equation*}
From Proposition 4 iii) we have S_(0)(x,y,n)=s_(n)(x+y)S_{0}(x, y, n)=s_{n}(x+y).
In the following we consider that xx is the variable. Let us denote theta=X(Q^('))^(-1)\theta= X\left(Q^{\prime}\right)^{-1}.
From Proposition 3 i) it results that thetap_(k)(x)=p_(k+1)(x)\theta p_{k}(x)=p_{k+1}(x) and consequently the linear operator theta\theta is called the shift operator for the sequence (p_(n))_(n >= 0)\left(p_{n}\right)_{n \geq 0} (see [10]). Therefore theta Qp_(k)(x)=theta(kp_(k-1)(x))=kp_(k)(x)\theta Q p_{k}(x)=\theta\left(k p_{k-1}(x)\right)=k p_{k}(x); consequently kk is an eigenvalue for the operator theta Q\theta Q, with its eigenvector p_(k)(x)p_{k}(x). We have
Because QQ is shift invariant and Q^(k)s_(n)(x)=n(n-1)dots(n-k+1)s_(n-k)(x)=n^([k])s_(n-k)(x)Q^{k} s_{n}(x)=n(n-1) \ldots(n-k+1) s_{n-k}(x)= n^{[k]} s_{n-k}(x) we obtain
{:(7)S_(m)(x","y","n)=(1)/(n^(m))sum_(k=0)^(n)((n)/(k))k!S(m","k)theta^(k)E^(y)s_(n-k)(x)","AA m inN^(**):}\begin{equation*}
S_{m}(x, y, n)=\frac{1}{n^{m}} \sum_{k=0}^{n}\binom{n}{k} k!S(m, k) \theta^{k} E^{y} s_{n-k}(x), \forall m \in \mathbb{N}^{*} \tag{7}
\end{equation*}
Theorem 1. If L_(n)^(Q,S)L_{n}^{Q, S} is the linear operator defined by (2) then
we obtain from (7): S_(1)(x,1-x,n)=x[(Q^('))^(-1)s_(n-1)](1)S_{1}(x, 1-x, n)=x\left[\left(Q^{\prime}\right)^{-1} s_{n-1}\right](1); consequently we get:
(L_(n)^(Q,S)e_(1))(x)=([(Q^('))^(-1)s_(n-1)](1))/(s_(n)(1))x.\left(L_{n}^{Q, S} e_{1}\right)(x)=\frac{\left[\left(Q^{\prime}\right)^{-1} s_{n-1}\right](1)}{s_{n}(1)} x .
Using the Pincherle derivative of the shift operator E^(y)E^{y}
Because s_(n-k)=S^(-1)p_(n-k),XS^(-1)=S^(-1)X-(S^(-1))^(')s_{n-k}=S^{-1} p_{n-k}, X S^{-1}=S^{-1} X-\left(S^{-1}\right)^{\prime} (from the definition of Pincherle derivative) and (Q^('))^(-1)p_(n-k)(x)=p_(n-k+1)(x)//x\left(Q^{\prime}\right)^{-1} p_{n-k}(x)=p_{n-k+1}(x) / x (from Proposition 3 i), we obtain
{:[(14)theta^(2)E^(y)s_(n-k)(x)=XE^(y)(Q^('))^(-1)s_(n-k+1)(x)-XE^(y)(Q^('))^(-2)(S^(-1))^(')Ss_(n-k)(x)-],[-yXE^(y)(Q^('))^(-2)s_(n-k)(x)]:}\begin{align*}
\theta^{2} E^{y} s_{n-k}(x)= & X E^{y}\left(Q^{\prime}\right)^{-1} s_{n-k+1}(x)-X E^{y}\left(Q^{\prime}\right)^{-2}\left(S^{-1}\right)^{\prime} S s_{n-k}(x)- \tag{14}\\
& -y X E^{y}\left(Q^{\prime}\right)^{-2} s_{n-k}(x)
\end{align*}
Replacing (11) and (14) in (7) we can write
{:[S_(2)(x","y","n)=xE^(y)(Q^('))^(-1)s_(n-1)(x)-(n-1)/(n)[xE^(y)(Q^('))^(-2)(S^(-1))^(')Ss_(n-2)(x)-:}],[{:-yxE^(y)(Q^('))^(-2)s_(n-2)(x)]]:}\begin{aligned}
S_{2}(x, y, n)= & x E^{y}\left(Q^{\prime}\right)^{-1} s_{n-1}(x)-\frac{n-1}{n}\left[x E^{y}\left(Q^{\prime}\right)^{-2}\left(S^{-1}\right)^{\prime} S s_{n-2}(x)-\right. \\
& \left.-y x E^{y}\left(Q^{\prime}\right)^{-2} s_{n-2}(x)\right]
\end{aligned}
From (10) and the previous relation one obtains expression L_(n)^(Q,S)e_(2)L_{n}^{Q, S} e_{2} from theorem's conclusion.
Lemma 1. Let QQ be a delta operator and SS an invertible shift invariant operator. Let (p_(n)(x))_(n >= 0)\left(p_{n}(x)\right)_{n \geq 0} be the sequence of basic polynomials for QQ and (s_(n)(x))_(n >= 0)\left(s_{n}(x)\right)_{n \geq 0} a Sheffer set relative to Q,s_(n)=S^(-1)p_(n)Q, s_{n}=S^{-1} p_{n} with s_(n)(1)!=0s_{n}(1) \neq 0 for any positive integer nn. If p_(k)^(')(0) >= 0p_{k}^{\prime}(0) \geq 0 and s_(k)(0) >= 0s_{k}(0) \geq 0 for n=0,1,2,dotsn=0,1,2, \ldots then the operator L_(n)^(Q,S)L_{n}^{Q, S} defined by (2) is positive.
Proof. If p_(k)^(')(0) >= 0p_{k}^{\prime}(0) \geq 0 using Proposition 3 ii), it is easy to prove by induction that p_(k)(x) >= 0,AA k inNp_{k}(x) \geq 0, \forall k \in \mathbb{N} and AA x in[0,1]\forall x \in[0,1].
If we consider x=0x=0 in Proposition 4 iii) we obtain
accordingly, for s_(k)(0) >= 0s_{k}(0) \geq 0 and p_(k)(x) >= 0,AA k inN,AA x in[0,1]p_{k}(x) \geq 0, \forall k \in \mathbb{N}, \forall x \in[0,1], we have s_(k)(x) >= 0,AA k inNs_{k}(x) \geq 0, \forall k \in \mathbb{N} and AA x in[0,1]\forall x \in[0,1]. Therefore the operator L_(n)^(Q,S)L_{n}^{Q, S} is positive.
Lemma 2. If the operator L_(n)^(Q,S)L_{n}^{Q, S} is positive, then a_(n)in[0,1],b_(n) <= 1a_{n} \in[0,1], b_{n} \leq 1 and 0 <= c_(n) <= min{(1-b_(n))/(2),a_(n)-a_(n)^(2)},AA n inN0 \leq c_{n} \leq \min \left\{\frac{1-b_{n}}{2}, a_{n}-a_{n}^{2}\right\}, \forall n \in \mathbb{N}, where a_(n),b_(n)a_{n}, b_{n} and c_(n)c_{n} are defined by (9).
Proof. Since 0 <= e_(1)(t) <= 1,AA t in[0,1]0 \leq e_{1}(t) \leq 1, \forall t \in[0,1] and the operator L_(n)^(Q,S)L_{n}^{Q, S} is positive, we have 0 <= (L_(n)^(Q,S)e_(1))(x) <= 1,AA x in[0,1]0 \leq\left(L_{n}^{Q, S} e_{1}\right)(x) \leq 1, \forall x \in[0,1], and as (L_(n)^(Q,S)e_(1))(x)=a_(n)x\left(L_{n}^{Q, S} e_{1}\right)(x)=a_{n} x, we get a_(n)in[0,1]a_{n} \in[0,1].
From t(1-t) >= 0t(1-t) \geq 0 it results that (L_(n)^(Q,S)e_(1))(x)-(L_(n)^(Q,S)e_(2))(x) >= 0\left(L_{n}^{Q, S} e_{1}\right)(x)-\left(L_{n}^{Q, S} e_{2}\right)(x) \geq 0, which leads to x(1-x)b_(n)+xc_(n) >= 0,AA x in[0,1]x(1-x) b_{n}+x c_{n} \geq 0, \forall x \in[0,1] and choosing x=1x=1, we get c_(n) >= 0c_{n} \geq 0.
Since t^(2)-t+1//4 >= 0t^{2}-t+1 / 4 \geq 0, we obtain (L_(n)^(Q,S)e_(2))(x)-(L_(n)^(Q,S)e_(1))(x)+(L_(n)^(Q,S)e_(0))(x)//4 >= 0,AA x in[0,1]\left(L_{n}^{Q, S} e_{2}\right)(x)-\left(L_{n}^{Q, S} e_{1}\right)(x)+\left(L_{n}^{Q, S} e_{0}\right)(x) / 4 \geq 0, \forall x \in[0,1], relation equivalent to x^(2)b_(n)-xb_(n)-xc_(n)+1//4 >= 0,AA x in[0,1]x^{2} b_{n}-x b_{n}-x c_{n}+1 / 4 \geq 0, \forall x \in[0,1]. If we consider x=1//2x=1 / 2, it results that c_(n) <= (1-b_(n))//2c_{n} \leq\left(1-b_{n}\right) / 2 and because c_(n) >= 0c_{n} \geq 0 we get b_(n) <= 1b_{n} \leq 1.
we have a_(n)^(2)x^(2) <= b_(n)x^(2)+x(a_(n)-b_(n)-c_(n)),AA x in[0,1]a_{n}^{2} x^{2} \leq b_{n} x^{2}+x\left(a_{n}-b_{n}-c_{n}\right), \forall x \in[0,1]. For x=1x=1 that implies c_(n) <= a_(n)-a_(n)^(2)c_{n} \leq a_{n}-a_{n}^{2}.
Theorem 2. Let QQ be a delta operator and SS an invertible shift invariant operator. Let (p_(n)(x))_(n >= 0)\left(p_{n}(x)\right)_{n \geq 0} be the sequence of basic polynomials for QQ, with p_(n)^(')(0) >= 0,AA n inNp_{n}^{\prime}(0) \geq 0, \forall n \in \mathbb{N}, and (s_(n)(x))_(n >= 0)\left(s_{n}(x)\right)_{n \geq 0} a Sheffer set relative to Q,s_(n)=S^(-1)p_(n)Q, s_{n}=S^{-1} p_{n} with s_(n)(1)!=0s_{n}(1) \neq 0 and s_(n)(0) >= 0,AA n inNs_{n}(0) \geq 0, \forall n \in \mathbb{N}. If f in C[0,1]f \in C[0,1] and lim_(n rarr oo)a_(n)=lim_(n rarr oo)b_(n)=1\lim _{n \rightarrow \infty} a_{n}= \lim _{n \rightarrow \infty} b_{n}=1, where a_(n)a_{n} and b_(n)b_{n} are defined by (9), then the operator L_(n)^(Q,S)L_{n}^{Q, S} converges to the function ff, uniformly on the interval [0,1][0,1].
Proof. If lim_(n rarr oo)a_(n)=1\lim _{n \rightarrow \infty} a_{n}=1 then lim_(n rarr oo)(L_(n)^(Q,S)e_(1))(x)=e_(1)(x)\lim _{n \rightarrow \infty}\left(L_{n}^{Q, S} e_{1}\right)(x)=e_{1}(x). From Lemma 2,c_(n) <= a_(n)-a_(n)^(2)2, c_{n} \leq a_{n}-a_{n}^{2} so we have lim_(n rarr oo)c_(n)=0\lim _{n \rightarrow \infty} c_{n}=0, and as lim_(n rarr oo)b_(n)=1\lim _{n \rightarrow \infty} b_{n}=1, we get lim_(n rarr oo)(L_(n)^(Q,S)e_(2))(x)=e_(2)(x)\lim _{n \rightarrow \infty}\left(L_{n}^{Q, S} e_{2}\right)(x)=e_{2}(x). Therefore lim_(n rarr oo)(L_(n)^(Q,S)e_(i))(x)=e_(i)(x)\lim _{n \rightarrow \infty}\left(L_{n}^{Q, S} e_{i}\right)(x)=e_{i}(x) for i=0,1,2i= 0,1,2 so we can use the convergence criterion of Bohman-Korokvin.
3. REPRESENTATIONS OF THE OPERATOR L_(n)^(Q,S)L_{n}^{Q, S}
Theorem 3. The operator L_(n)^(Q,S)L_{n}^{Q, S} can be represented in the form
Moreover L_(n)^(Q,S)(P_(m))subeP_(m),AA m inNL_{n}^{Q, S}\left(P_{m}\right) \subseteq P_{m}, \forall m \in \mathbb{N}.
Proof. From the Newton interpolation formula we have
Since (L_(n)^(Q,S)f)(x)=(1)/(s_(n)(1))sum_(k=0)^(n)w_(k,n)(x,1-x)f((k)/(n))\left(L_{n}^{Q, S} f\right)(x)=\frac{1}{s_{n}(1)} \sum_{k=0}^{n} w_{k, n}(x, 1-x) f\left(\frac{k}{n}\right) we obtain (15).
In order to show that L_(n)^(Q,S)(P_(m))subeP_(m)L_{n}^{Q, S}\left(P_{m}\right) \subseteq P_{m} we shall prove that deg(d_(k,n)(x))=k\operatorname{deg}\left(d_{k, n}(x)\right)=k.
We remind that if ( p_(n)p_{n} ) is a basic sequence for Q=q(D)Q=q(D) and h(t)h(t) is the compositional inverse of q(t)q(t), then the generating function for (p_(n))\left(p_{n}\right) is
If we differentiate the relation (16) mm times with respect to tt, we get
(18) sum_(k=0)^(oo)p_(k+m)(x)(t^(k))/(k!)=(d^(m))/(dx^(m))(e^(xh(t)))=(xh_(1)(t)+x^(2)h_(1)(t)+cdots+x^(m)h_(m)(t))e^(xh(t))\sum_{k=0}^{\infty} p_{k+m}(x) \frac{t^{k}}{k!}=\frac{d^{m}}{d x^{m}}\left(e^{x h(t)}\right)=\left(x h_{1}(t)+x^{2} h_{1}(t)+\cdots+x^{m} h_{m}(t)\right) e^{x h(t)},
where every h_(i)(t)h_{i}(t) is a product of derivatives of h(t)h(t).
Let us denote r(k,m,x)=sum_(j=0)^(k)((k)/(j))p_(j+m)(x)s_(k-j)(1-x)r(k, m, x)=\sum_{j=0}^{k}\binom{k}{j} p_{j+m}(x) s_{k-j}(1-x). Expanding (1)/(s(h(t)))h_(i)(t)e^(h(t))=sum_(k >= 0)alpha_(ik)(t^(k))/(k!)\frac{1}{s(h(t))} h_{i}(t) e^{h(t)}=\sum_{k \geq 0} \alpha_{i k} \frac{t^{k}}{k!}, from (17) and (18) we get r(k,m,x)=xalpha_(1k)+x^(2)alpha_(2k)+cdots+x^(m)alpha_(mk)r(k, m, x)=x \alpha_{1 k}+ x^{2} \alpha_{2 k}+\cdots+x^{m} \alpha_{m k}.
Because d_(k,n)(x)=r(n-k,k,x)//s_(n)(1)d_{k, n}(x)=r(n-k, k, x) / s_{n}(1) we obtain deg(d_(k,n)(x))=k\operatorname{deg}\left(d_{k, n}(x)\right)=k.
Suppose that p inP_(m)p \in P_{m}. Then [0,(1)/(n),dots,(k)/(n);p]=0\left[0, \frac{1}{n}, \ldots, \frac{k}{n} ; p\right]=0 for k >= m+1k \geq m+1, and using (15) we get L_(n)^(Q,S)(P_(m))subeP_(m)L_{n}^{Q, S}\left(P_{m}\right) \subseteq P_{m}.
Remark 1. For Q=DQ=D (it means that s_(n)s_{n} is an Appell set A_(n)A_{n} ) we have theta=X\theta= X, therefore in this case d_(k,n)=(A_(n-k)(1))/(A_(n)(1))x^(k)d_{k, n}=\frac{A_{n-k}(1)}{A_{n}(1)} x^{k}. This representation for operators constructed with Appell sequences was given by C. Manole in [5].
Theorem 4. Suppose that all the assumptions of Theorem 2 are true, then there exists theta_(1n),theta_(2n),theta_(3n)in[0,1]\theta_{1 n}, \theta_{2 n}, \theta_{3 n} \in[0,1] such that AA x in[0,1]\forall x \in[0,1] and AA f in C[0,1]\forall f \in C[0,1] we have
where alpha(x,n)=x^(2)(b_(n)-a_(n)^(2))+x(a_(n)-b_(n)-c_(n))\alpha(x, n)=x^{2}\left(b_{n}-a_{n}^{2}\right)+x\left(a_{n}-b_{n}-c_{n}\right).
Proof. First we shall prove that f(a_(n)x) <= (L_(n)^(Q,S)f)(x)f\left(a_{n} x\right) \leq\left(L_{n}^{Q, S} f\right)(x) for every convex function ff.
Let us denote c_(k)=(1)/(s_(n)(1))((n)/(k))p_(k)(x)s_(n-k)(1-x)c_{k}=\frac{1}{s_{n}(1)}\binom{n}{k} p_{k}(x) s_{n-k}(1-x) and x_(k)=(k)/(n),k=0,1,dots,nx_{k}=\frac{k}{n}, k=0,1, \ldots, n.
We have c_(k) >= 0,sum_(k=0)^(n)c_(k)=1c_{k} \geq 0, \sum_{k=0}^{n} c_{k}=1 and x_(k) > 0,AA k inNx_{k}>0, \forall k \in \mathbb{N}. If ff is a convex function then f(sum_(k=0)^(n)c_(k)x_(k)) <= sum_(k=0)^(n)c_(k)f(x_(k))f\left(\sum_{k=0}^{n} c_{k} x_{k}\right) \leq \sum_{k=0}^{n} c_{k} f\left(x_{k}\right); but
sum_(k=0)^(n)c_(k)x_(k)=(L_(n)^(Q,S)e_(1))(x)=a_(n)x quad" and "quadsum_(k=0)^(n)c_(k)f(x_(k))=(L_(n)^(Q,S)f)(x)\sum_{k=0}^{n} c_{k} x_{k}=\left(L_{n}^{Q, S} e_{1}\right)(x)=a_{n} x \quad \text { and } \quad \sum_{k=0}^{n} c_{k} f\left(x_{k}\right)=\left(L_{n}^{Q, S} f\right)(x)
therefore we get f(a_(n)x) <= (L_(n)^(Q,S)f)(x)f\left(a_{n} x\right) \leq\left(L_{n}^{Q, S} f\right)(x).
If we consider the formula
we have (R_(n)f) <= 0\left(R_{n} f\right) \leq 0 for every convex function ff.
Since (R_(n)e_(i))(x)=0\left(R_{n} e_{i}\right)(x)=0 for i=0,1i=0,1, the degree of exactness of the previous formula is one and then there exist theta_(1n),theta_(2n),theta_(3n)in[0,1]\theta_{1 n}, \theta_{2 n}, \theta_{3 n} \in[0,1] such that the remainder can be represented in the following form
where (R_(n)e_(2))(x)=x^(2)(a_(n)^(2)-b_(n))+x(b_(n)+c_(n)-a_(n))\left(R_{n} e_{2}\right)(x)=x^{2}\left(a_{n}^{2}-b_{n}\right)+x\left(b_{n}+c_{n}-a_{n}\right), so we obtain the conclusion.
4. EXAMPLES
If S=IS=I then s_(n)=p_(n)s_{n}=p_{n} and in this case the operator defined by (2) becomes the binomial operator (1) introduced by Tiberiu Popoviciu in 9 .
1.1. For Q=DQ=D the basic sequence is p_(n)(x)=x^(n)p_{n}(x)=x^{n} and L_(n)^(D,I)L_{n}^{D, I} is the Bernstein operator B_(n)B_{n}.
1.2. If QQ is Abel operator A=E^(-beta)DA=E^{-\beta} D we have p_(n)(x)=x(x+n beta)^(n-1)p_{n}(x)=x(x+n \beta)^{n-1} and L_(n)^(A,I)L_{n}^{A, I} is the second operator introduced by Cheney and Sharma in [1,
1.3. For Laguerre delta operator L=(D)/(D+I)L=\frac{D}{D+I} the basic sequence is l_(n)(x)=sum_(k=0)^(n)((n)/(k))((n-1)!)/((k-1)!)x^(k)l_{n}(x)= \sum_{k=0}^{n}\binom{n}{k} \frac{(n-1)!}{(k-1)!} x^{k} and the coresponding binomial operator has been considered by T. Popoviciu.
1.4. The delta operator Q=(1)/(alpha)grad_(alpha)=(1)/(alpha)(I-E^(-alpha))Q=\frac{1}{\alpha} \nabla_{\alpha}=\frac{1}{\alpha}\left(I-E^{-\alpha}\right) has the basic sequence p_(n)(x)=x^([n,-alpha])=x(x+alpha)dots(x+(n-1)alpha)p_{n}(x)=x^{[n,-\alpha]}=x(x+\alpha) \ldots(x+(n-1) \alpha) and in this case we obtain the operator
which has been introduced and investigated in detail by D. D. Stancu in [14], [16] and other papers.
1.5. The exponential polynomials t_(n)(x)=sum_(k=0)^(n)S(n,k)x^(k)=e^(-x)sum_(k=0)^(oo)(k^(n)x^(k))/(k!)t_{n}(x)=\sum_{k=0}^{n} S(n, k) x^{k}= e^{-x} \sum_{k=0}^{\infty} \frac{k^{n} x^{k}}{k!}, where S(n,k)S(n, k) denote the Stirling numbers of the second kind, are basic polynomials for the delta operator T=ln(I+D)T=\ln (I+D). The approximation operator construct by means of the exponential polynomials
was studied by C. Manole in [5].
1.6. If we take the delta operator Q=G=(1)/(alpha)E^(-beta)grad_(alpha)=(1)/(alpha)(E^(-beta)-:}E^(-alpha-beta)Q=G=\frac{1}{\alpha} E^{-\beta} \nabla_{\alpha}=\frac{1}{\alpha}\left(E^{-\beta}-\right. E^{-\alpha-\beta} ) its basic sequence is p_(n)(x)=x(x+alpha+n beta)^([n-1,-alpha])p_{n}(x)=x(x+\alpha+n \beta)^{[n-1,-\alpha]} and the operator
was investigated by D. D. Stancu, G. Moldovan. In [18] D. D. Stancu and M. R. Occorsio have studied this operator with the nodes (k+gamma)/(n+delta),0 <= gamma <= delta\frac{k+\gamma}{n+\delta}, 0 \leq \gamma \leq \delta.
2. If Q=DQ=D and SS is an invertible shift invariant operator then p_(n)(x)=x^(n)p_{n}(x)=x^{n} and s_(n)=A_(n)=S^(-1)x^(n)s_{n}=A_{n}=S^{-1} x^{n} is an Appell set. The operator of the form
was introduced and investigated by C. Manole in [5].
2.1. If S=(I+D)^(-1)S=(I+D)^{-1} the coresponding Appell set is A_(n)(x)=x^(n)+nx^(n-1)A_{n}(x)=x^{n}+n x^{n-1} and then
If we take Q=A=E^(-beta)DQ=A=E^{-\beta} D and S=E^(beta)Q^(')=I-beta DS=E^{\beta} Q^{\prime}=I-\beta D then p_(n)(x)=x(x+n beta)^(n-1)p_{n}(x)= x(x+n \beta)^{n-1} is the basic sequence for QQ and s_(n)(x)=(x+n beta)^(n)s_{n}(x)=(x+n \beta)^{n} a Sheffer set for QQ we obtain the first operator introduced by Cheney and Sharma in [1]:
For Q=(1)/(alpha)E^(-beta)grad_(alpha)=(1)/(alpha)(E^(-beta)-E^(-alpha-beta))Q=\frac{1}{\alpha} E^{-\beta} \nabla_{\alpha}=\frac{1}{\alpha}\left(E^{-\beta}-E^{-\alpha-\beta}\right) and S=E^(alpha+beta)Q^(')=(1)/(alpha)((alpha+beta)I-{: betaE^(alpha))S=E^{\alpha+\beta} Q^{\prime}=\frac{1}{\alpha}((\alpha+\beta) I- \left.\beta E^{\alpha}\right) we have p_(n)(x)=x(x+alpha+n beta)^([n-1,-alpha])p_{n}(x)=x(x+\alpha+n \beta)^{[n-1,-\alpha]} and s_(n)(x)=(x+n beta)^([n,-alpha])s_{n}(x)=(x+n \beta)^{[n,-\alpha]} therefore the operator L_(n)^(Q,S)L_{n}^{Q, S} in this case is
If we replace xx with s(x)s(x) we obtain a operator which has been studied by G . Moldovan in [6]. He has found the value of this operator for the monomials e_(i)e_{i} for i=1,2i=1,2 using some generalized identities of Vandermonde type.
We want to find the sequences a_(n),b_(n),c_(n)a_{n}, b_{n}, c_{n}, which appears in (L_(n)^([alpha,beta])e_(i))(x)\left(L_{n}^{[\alpha, \beta]} e_{i}\right)(x), using relations (9).
Since s_(n-1)(x)=(x+(n-1)beta)^([n-1,-alpha])=E^((n-2)alpha+(n-1)beta)x^([n-1,alpha])s_{n-1}(x)=(x+(n-1) \beta)^{[n-1,-\alpha]}=E^{(n-2) \alpha+(n-1) \beta} x^{[n-1, \alpha]} and x^([n,alpha])=x(x-1)dots(x-(n-1)alpha)x^{[n, \alpha]}= x(x-1) \ldots(x-(n-1) \alpha) is the basic sequence for the delta operator (Delta_(alpha))/(alpha)\frac{\Delta_{\alpha}}{\alpha}, we have ((Delta_(alpha))/(alpha))^(k)s_(n-1)(x)=E^((n-2)alpha+(n-1)beta)((Delta_(alpha))/(alpha))^(k)x^([n-1,alpha])=(n-1)^([k])E^((n-2)alpha+(n-1)beta)\left(\frac{\Delta_{\alpha}}{\alpha}\right)^{k} s_{n-1}(x)=E^{(n-2) \alpha+(n-1) \beta}\left(\frac{\Delta_{\alpha}}{\alpha}\right)^{k} x^{[n-1, \alpha]}=(n-1)^{[k]} E^{(n-2) \alpha+(n-1) \beta}. *x^([n-1-k,alpha])\cdot x^{[n-1-k, \alpha]}. Because a_(n)=([(Q^('))^(-1)s_(n-1)](1))/(s_(n)(1))a_{n}=\frac{\left[\left(Q^{\prime}\right)^{-1} s_{n-1}\right](1)}{s_{n}(1)} we get
Since b_(n)=(n-1)/(n)([(Q^('))^(-2)s_(n-2)](1))/(s_(n)(1))b_{n}=\frac{n-1}{n} \frac{\left[\left(Q^{\prime}\right)^{-2} s_{n-2}\right](1)}{s_{n}(1)} and
Because Q^('')=(1)/(alpha)(beta^(2)E^(-beta)-(alpha+beta)^(2)E^(-alpha-beta))Q^{\prime \prime}=\frac{1}{\alpha}\left(\beta^{2} E^{-\beta}-(\alpha+\beta)^{2} E^{-\alpha-\beta}\right) and (alpha+beta)Q^(')+Q^('')=-betaE^(-beta)(\alpha+\beta) Q^{\prime}+Q^{\prime \prime}=-\beta E^{-\beta} this implies
Now we establish some estimates of the order of approximation of a function f in C[0,1]f \in C[0,1] by means of the operator L_(n)^(Q,S)L_{n}^{Q, S}, defined by (2).
According to a result of O. Shisha and B. Mond [13], we can write
so we get |f(x)-(L_(n)^(Q,S)f)(x)| <= [1+(1)/(delta^(2))[x^(2)(b_(n)-2a_(n)+1)+x(a_(n)-b_(n)-c_(n))]]omega_(1)(f;delta)\left|f(x)-\left(L_{n}^{Q, S} f\right)(x)\right| \leq\left[1+\frac{1}{\delta^{2}}\left[x^{2}\left(b_{n}-2 a_{n}+1\right)+x\left(a_{n}-b_{n}-c_{n}\right)\right]\right] \omega_{1}(f ; \delta).
One observes that if b_(n)-2a_(n)+1 < 0b_{n}-2 a_{n}+1<0 then x^(2)(b_(n)-2a_(n)+1)+x(a_(n)-b_(n)-c_(n)) <= ((a_(n)-b_(n)-c_(n))^(2))/(4(2a_(n)-b_(n)-1)),AA x in[0,1]x^{2}\left(b_{n}-2 a_{n}+1\right)+x\left(a_{n}-b_{n}-c_{n}\right) \leq \frac{\left(a_{n}-b_{n}-c_{n}\right)^{2}}{4\left(2 a_{n}-b_{n}-1\right)}, \forall x \in[0,1].
By choosing delta=(1)/(sqrtn)\delta=\frac{1}{\sqrt{n}} we can state
Theorem 5. If f in C[0,1]f \in C[0,1] and EE k inN\exists k \in \mathbb{N} such as b_(n)-2a_(n)+1 < 0,AA n >= kb_{n}-2 a_{n}+1<0, \forall n \geq k, then we can give the following estimation of the order of approximation, by means of the first modulus of continuity
||f-L_(n)^(Q,S)f|| <= (1+(n)/(4)((a_(n)-b_(n)-c_(n))^(2))/((2a_(n)-b_(n)-1)))omega_(1)(f;(1)/(sqrtn)),quad n >= k\left\|f-L_{n}^{Q, S} f\right\| \leq\left(1+\frac{n}{4} \frac{\left(a_{n}-b_{n}-c_{n}\right)^{2}}{\left(2 a_{n}-b_{n}-1\right)}\right) \omega_{1}\left(f ; \frac{1}{\sqrt{n}}\right), \quad n \geq k
where a_(n),b_(n),c_(n)a_{n}, b_{n}, c_{n} are defined by (9).
In the case of binomial operators of positive type defined by (1), since S^(')=I^(')=OS^{\prime}=I^{\prime}=O we have
We mention that this inequality was established by D. D. Stancu in [18].
In order to find an evaluation of the order of approximation using both moduli of smoothness omega_(1)\omega_{1} and omega_(2)\omega_{2} we can use a result of H. H. Gonska and R. K. Kovacheva included in the following
Lemma 3. [2]. If I=[a,b]I=[a, b] is a compact interval of the real axis and I_(1)=[a_(1),b_(1)]I_{1}= \left[a_{1}, b_{1}\right] is a subinterval of it, and if we assume that L:C(I)rarr C(I_(1))L: C(I) \rightarrow C\left(I_{1}\right) is a positive operator, such that Le_(0)=e_(0)L e_{0}=e_{0} and 0 <= delta <= (1)/(2)(b-a)0 \leq \delta \leq \frac{1}{2}(b-a), then we have
If we consider the binomial operator introduced by Tiberiu Popoviciu, using (19) and the previous relation, we arrive at an inequality which has found by D. D. Stancu (see [18])
[1] Cheney, E. W. and Sharma, A., On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 5, pp. 77-82, 1964.
[2] Gonska, H. H. and Kovacheva, R. K., The second order modulus revisited: remarks, applications, problems, Conferenze del Seminario di Matematica Univ. Bari, 257, pp. 132, 1994.
[3] Lupaş, L. and Lupaş, A., Polynomials of binomial type and approximation operators, Studia Univ. Babes-Bolyai, Mathematica, 32, pp. 61-69, 1987.
[4] Lupaş, A., Approximation operators of binomial type, Proc. IDoMAT 98, International Series of Numerical Mathematics, ISNM 132, Birkhäuser Verlag, Basel, pp. 175-198, 1999.
[5] Manole, C., Developments in series of generalized Appell polynomials, with applications to the approximation of functions, Ph.D. Thesis, Cluj-Napoca, Romania, 1984 (in Romanian).
[6] Moldovan, G., Generalizations of the S. N. Bernstein operators, Ph.D. Thesis, ClujNapoca, Romania, 1971 (in Romanian).
[7] Moldovan, G., Discrete convolutions and positive operators I, Annales Univ. Sci. Budapest R. Eötvös, 15, pp. 31-34, 1972.
[8] Mullin, R. and Rota, G. C., On the foundations of combinatorial theory III, theory of binomial enumeration, in: B. Harris, ed., Graph Theory and Its Applications, Academic Press, New York, pp. 167-213, 1970.
[9] Popoviciu, T., Remarques sur les poynômes binomiaux, Bul. Soc. Ştiinte Cluj, 6, pp 146-148, 1931.
[10] Roman, S., Operational formulas, Linear and Multilinear Algebra, 12, pp. 1-20, 1982.
[11] Rota, G. C., Kahaner, D. and Odlyzko, A., Finite operator calculus, J. Math. Anal. Appl., 42, pp. 685-760, 1973.
[12] Sablonnière, P., Positive Bernstein-Sheffer operators, J. Approx. Theory, 83, pp. 330-341, 1995.
[13] Shisha, O. and Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A., 60, pp. 1196-1200, 1968.
[14] Stancu, D. D., Approximation of functions by a new class of linear positive operators, Rev. Roum. Math. Pures Appl., 13, pp. 1173-1194, 1968.
[15] Stancu, D. D., On a generalization of the Bernstein polynomials, Studia Univ. BabeşBolyai, Cluj, 14, pp. 31-45, 1969.
[16] Stancu, D. D., Approximation properties of a class of linear positive operators, Studia Univ. Babeş-Bolyai, Cluj, 15, pp. 31-38, 1970.
[17] Stancu, D. D., Approximation of functions by means of some new classes of positive linear operators, Numerische Methoden der Approximationstheorie, Proc. Conf. Oberwolfach 1971 ISNM 16, Birkhäuser-Verlag, Basel, pp. 187-203, 1972.
[18] Stancu, D. D. and Occorsio, M.R., On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Numér. Théor. Approx., 27 no.1, pp. 167-181, 1998. 줄
[19] Stancu, D. D. and Cismaşiu, C., On an approximating linear positive operator of Cheney-Sharma, Rev. Anal. Numér. Théor. Approx., 26, pp. 221-227, 1997.«
Received September 12, 2000.
"T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 3400 Cluj-Napoca, Romania, e-mail: craciun@ictp-acad.math.ubbcluj.ro.
[1] Cheney, E. W. and Sharma, A., On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 5, pp. 77–82, 1964.
[2] Gonska, H. H. and Kovacheva, R. K., The second order modulus revisited: remarks, applications, problems, Conferenze del Seminario di Matematica Univ. Bari, 257, pp.1–32, 1994.
[3] Lupas, L. and Lupas, A., Polynomials of binomial type and approximation operators, Studia Univ. Babes–Bolyai, Mathematica, 32, pp. 61–69, 1987.
[4] Lupas, A., Approximation operators of binomial type, Proc. IDoMAT 98, International Series of Numerical Mathematics, ISNM 132, Birkhauser Verlag, Basel, pp. 175 198, 1999.
[5] Manole, C., Developments in series of generalized Appell polynomials, with applications to the approximation of functions, Ph.D. Thesis, Cluj–Napoca, Romania, 1984 (in Romanian).
[6] Moldovan, G., Generalizations of the S. N. Bernstein operators, Ph.D. Thesis, Cluj–Napoca, Romania, 1971 (in Romanian).
[7] Moldovan, G., Discrete convolutions and positive operators I, Annales Univ. Sci. Budapest R. E¨otv¨os, 15, pp. 31–34, 1972.
[8] Mullin, R. and Rota, G. C., On the foundations of combinatorial theory III, theory of binomial enumeration, in: B. Harris, ed., Graph Theory and Its Applications, Academic Press, New York, pp. 167–213, 1970.
[9] Popoviciu, T., Remarques sur les poynomes binomiaux, Bul. Soc. Stiinte Cluj, 6, pp 146–148, 1931.
[10] Roman, S., Operational formulas, Linear and Multilinear Algebra, 12, pp. 1–20, 1982.
[11] Rota, G. C., Kahaner, D. and Odlyzko, A., Finite operator calculus, J. Math. Anal.
Appl., 42, pp. 685–760, 1973.
[12] Sablonniere, P. ` , Positive Bernstein–Sheffer operators, J. Approx. Theory, 83, pp. 330–341, 1995.
[13] Shisha, O. and Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A., 60, pp. 1196–1200, 1968.
[14] Stancu, D. D., Approximation of functions by a new class of linear positive operators, Rev. Roum. Math. Pures Appl., 13, pp. 1173–1194, 1968.
[15] Stancu, D. D., On a generalization of the Bernstein polynomials, Studia Univ. Babes– Bolyai, Cluj, 14, pp. 31–45, 1969.
[16] Stancu, D. D., Approximation properties of a class of linear positive operators, Studia Univ. Babes–Bolyai, Cluj, 15, pp. 31–38, 1970.
[17] Stancu, D. D., Approximation of functions by means of some new classes of positive linear operators, Numerische Methoden der Approximationstheorie, Proc. Conf. Oberwolfach 1971 ISNM 16, Birkhauser–Verlag, Basel, pp. 187–203, 1972.
[18] Stancu, D. D. and Occorsio, M.R., On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Numer. Theor. Approx., 27 no.1, pp. 167–181, 1998.
[19] Stancu, D. D. and Cismasiu, C., On an approximating linear positive operator of Cheney–Sharma, Rev. Anal. Numer. Theor. Approx., 26, pp. 221–227, 1997.