The first Seiffert mean is strictly (G,A)-super-stabilizable

Abstract

The concept of strictly super-stabilizability for bivariate means has been defined recently by Ra\”{\i}soulli and S\'{a}ndor (J. Inequal. Appl. 2014:28,2014). We answer into affirmative to an open question posed in that paper, namely: Prove or disprove that the first Seiffert mean P~is strictly~ \[(G,A)\] -super-stabilizable. We use series expansions of the functions involved and reduce the main inequality to three auxiliary ones. The computations are performed with the aid of the computer algebra systems~Maple~and~Maxima. The method is general and can be adapted to other problems related to sub- or super-stabilizability.

Authors

Mira Cristiana Anisiu
T. Popoviciu Institute of Numerical Analysis, Romanian Academy, Fantanele 53, Cluj-Napoca, România

Valeriu Anisiu
Faculty of Mathematics and Computer Science, Babeş-Bolyai University,  Cluj-Napoca,  Romania

Keywords

PDF

Cite this paper as:

M.-C. Anisiu, V. Anisiu, The first Seiffert mean is strictly (G,A)-super-stabilizable, J. Ineq. Appl., 2014, 2014:185

About this paper

Journal

Journal of Inequalities and Applications

Publisher Name

Springer

Print ISSN

10255834

1029242X

References

[1] Raïssouli M, Sándor J: On a method of construction of new means with applications. J. Inequal. Appl. 2013., 2013: Article ID 89 Google Scholar
[2] Bullen P: Handbook of Means and Their Inequalities. Kluwer Academic, Dordrecht; 2003.Book MATH Google Scholar
[3] Anisiu M-C, Anisiu V: Logarithmic mean and weighted sum of geometric and anti-harmonic means. Rev. Anal. Numér. Théor. Approx. 2012,41(2):95–98.MathSciNet MATH Google Scholar
[4] Raïssouli M: Stability and stabilizability for means. Appl. Math. E-Notes 2011, 11: 159–174.MathSciNet MATH Google Scholar
[5] Raïssouli M, Sándor J: Sub-stabilizability and super-stabilizability for bivariate means. J. Inequal. Appl. 2014., 2014: Article ID 28 Google Scholar
[6] Chu Y-M, Wang M-K, Wang Z-K: An optimal double inequality between Seiffert and geometric means. J. Appl. Math. 2011., 2011: Article ID 26123 Google Scholar
[7] Chu Y-M, Wang M-K, Wang Z-K: A best-possible inequality between Seiffert and harmonic means. J. Inequal. Appl. 2011., 2011: Article ID 94 Google Scholar
[8] Gong W-M, Song Y-Q, Wang M-K, Chu Y-M: A sharp double inequality between Seiffert, arithmetic, and geometric means. Abstr. Appl. Anal. 2012., 2012: Article ID 684384 Google Scholar
[9] Song Y-Q, Qian W-M, Jiang Y-L, Chu Y-M: Optimal lower generalized logarithmic mean bound for the Seiffert mean. J. Appl. Math. 2013., 2013: Article ID 273653 Google Scholar
[10]  He Z-Y, Qian W-M, Jiang Y-L, Song Y-Q, Chu Y-M: Bounds for the combinations of Neuman-Sándor, arithmetic, and second Seiffert means in terms of contraharmonic mean. Abstr. Appl. Anal. 2013., 2013: Article ID 903982 Google Scholar
[11]  Gradshteyn I, Ryzhik I: Table of Integrals, Series and Products. Academic Press, Amsterdam; 2007.

2014-Anisiu-Anisiu-Thefirst

The first Seiffert mean is strictly ( G , A G , A G,AG, AG,A )-super-stabilizable

Mira C Anisiu 1 1 ^(1){ }^{1}1 and Valeriu Anisiu 2 2 ^(2**){ }^{2 *}2

*Correspondence:
anisiu@math.ubbcluj.ro
2 2 ^(2){ }^{2}2 Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 1 Kogălniceanu, Cluj-Napoca, 400084, România Full list of author information is available at the end of the article

Abstract

The concept of strictly super-stabilizability for bivariate means has been defined recently by Raïsoulli and Sándor (J. Inequal. Appl. 2014:28, 2014). We answer into affirmative to an open question posed in that paper, namely: Prove or disprove that the first Seiffert mean P P PPP is strictly ( G , A ) ( G , A ) (G,A)(G, A)(G,A)-super-stabilizable. We use series expansions of the functions involved and reduce the main inequality to three auxiliary ones. The computations are performed with the aid of the computer algebra systems Maple and Maxima. The method is general and can be adapted to other problems related to sub- or super-stabilizability. MSC: 26E60

Keywords: means; stable means; strictly super-stabilizable means

Introduction

A bivariate mean is a map m : ( 0 , ) 2 R m : ( 0 , ) 2 R m:(0,oo)^(2)rarrRm:(0, \infty)^{2} \rightarrow \mathbb{R}m:(0,)2R satisfying the following statement:
a , b > 0 , min ( a , b ) m ( a , b ) max ( a , b ) . a , b > 0 , min ( a , b ) m ( a , b ) max ( a , b ) . AA a,b > 0,quad min(a,b) <= m(a,b) <= max(a,b).\forall a, b>0, \quad \min (a, b) \leq m(a, b) \leq \max (a, b) .a,b>0,min(a,b)m(a,b)max(a,b).
Obviously m ( a , a ) = a m ( a , a ) = a m(a,a)=am(a, a)=am(a,a)=a for each a > 0 a > 0 a > 0a>0a>0. The maps ( a , b ) min ( a , b ) ( a , b ) min ( a , b ) (a,b)|->min(a,b)(a, b) \mapsto \min (a, b)(a,b)min(a,b) and ( a , b ) max ( a , b ) ( a , b ) max ( a , b ) (a,b)|->max(a,b)(a, b) \mapsto \max (a, b)(a,b)max(a,b) are means, and they are called the trivial means.
A mean m m mmm is symmetric if m ( a , b ) = m ( b , a ) m ( a , b ) = m ( b , a ) m(a,b)=m(b,a)m(a, b)=m(b, a)m(a,b)=m(b,a) for all a , b > 0 a , b > 0 a,b > 0a, b>0a,b>0, and monotone if ( a , b ) m ( a , b ) ( a , b ) m ( a , b ) (a,b)|->m(a,b)(a, b) \mapsto m(a, b)(a,b)m(a,b) is increasing in a a aaa and in b b bbb, that is, if a 1 a 2 a 1 a 2 a_(1) <= a_(2)a_{1} \leq a_{2}a1a2 (respectively b 1 b 2 b 1 b 2 b_(1) <= b_(2)b_{1} \leq b_{2}b1b2 ) then m ( a 1 , b ) m ( a 2 , b ) m a 1 , b m a 2 , b m(a_(1),b) <= m(a_(2),b)m\left(a_{1}, b\right) \leq m\left(a_{2}, b\right)m(a1,b)m(a2,b) (respectively m ( a , b 1 ) m ( a , b 2 ) m a , b 1 m a , b 2 m(a,b_(1)) <= m(a,b_(2))m\left(a, b_{1}\right) \leq m\left(a, b_{2}\right)m(a,b1)m(a,b2) ). For more details as regards monotone means, see [1].
For two means m 1 m 1 m_(1)m_{1}m1 and m 2 m 2 m_(2)m_{2}m2 we write m 1 m 2 m 1 m 2 m_(1) <= m_(2)m_{1} \leq m_{2}m1m2 if and only if m 1 ( a , b ) m 2 ( a , b ) m 1 ( a , b ) m 2 ( a , b ) m_(1)(a,b) <= m_(2)(a,b)m_{1}(a, b) \leq m_{2}(a, b)m1(a,b)m2(a,b) for every a , b > 0 a , b > 0 a,b > 0a, b>0a,b>0, and m 1 < m 2 m 1 < m 2 m_(1) < m_(2)m_{1}<m_{2}m1<m2 if and only if m 1 ( a , b ) < m 2 ( a , b ) m 1 ( a , b ) < m 2 ( a , b ) m_(1)(a,b) < m_(2)(a,b)m_{1}(a, b)<m_{2}(a, b)m1(a,b)<m2(a,b) for all a , b > 0 a , b > 0 a,b > 0a, b>0a,b>0 with a b a b a!=ba \neq bab. Two means m 1 m 1 m_(1)m_{1}m1 and m 2 m 2 m_(2)m_{2}m2 are comparable if m 1 m 2 m 1 m 2 m_(1) <= m_(2)m_{1} \leq m_{2}m1m2 or m 2 m 1 m 2 m 1 m_(2) <= m_(1)m_{2} \leq m_{1}m2m1, and we say that m m mmm is between two comparable means m 1 m 1 m_(1)m_{1}m1 and m 2 m 2 m_(2)m_{2}m2 if min ( m 1 , m 2 ) m max ( m 1 , m 2 ) min m 1 , m 2 m max m 1 , m 2 min(m_(1),m_(2)) <= m <= max(m_(1),m_(2))\min \left(m_{1}, m_{2}\right) \leq m \leq \max \left(m_{1}, m_{2}\right)min(m1,m2)mmax(m1,m2). If the above inequalities are strict then we say that m m mmm is strictly between m 1 m 1 m_(1)m_{1}m1 and m 2 m 2 m_(2)m_{2}m2.
Some standard examples of means are given in the following (see [2] and the references therein):
A := A ( a , b ) = a + b 2 ; G := G ( a , b ) = a b ; H := H ( a , b ) = 2 a b a + b L := L ( a , b ) = b a ln b ln a , L ( a , a ) = a ; I := I ( a , b ) = e 1 ( b b a a ) 1 / ( b a ) A := A ( a , b ) = a + b 2 ; G := G ( a , b ) = a b ; H := H ( a , b ) = 2 a b a + b L := L ( a , b ) = b a ln b ln a , L ( a , a ) = a ; I := I ( a , b ) = e 1 b b a a 1 / ( b a ) {:[A:=A(a","b)=(a+b)/(2);quad G:=G(a","b)=sqrt(ab);quad H:=H(a","b)=(2ab)/(a+b)],[L:=L(a","b)=(b-a)/(ln b-ln a)","quad L(a","a)=a;quad I:=I(a","b)=e^(-1)((b^(b))/(a^(a)))^(1//(b-a))]:}\begin{aligned} & A:=A(a, b)=\frac{a+b}{2} ; \quad G:=G(a, b)=\sqrt{a b} ; \quad H:=H(a, b)=\frac{2 a b}{a+b} \\ & L:=L(a, b)=\frac{b-a}{\ln b-\ln a}, \quad L(a, a)=a ; \quad I:=I(a, b)=e^{-1}\left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)} \end{aligned}A:=A(a,b)=a+b2;G:=G(a,b)=ab;H:=H(a,b)=2aba+bL:=L(a,b)=balnblna,L(a,a)=a;I:=I(a,b)=e1(bbaa)1/(ba)
I ( a , a ) = a ; P := P ( a , b ) = b a 4 arctan b / a π = b a 2 arcsin b a b + a , P ( a , a ) = a , I ( a , a ) = a ; P := P ( a , b ) = b a 4 arctan b / a π = b a 2 arcsin b a b + a , P ( a , a ) = a , {:[I(a","a)=a;],[P:=P(a","b)=(b-a)/(4arctan sqrt(b//a)-pi)=(b-a)/(2arcsin((b-a)/(b+a)))","],[P(a","a)=a","]:}\begin{aligned} & I(a, a)=a ; \\ & P:=P(a, b)=\frac{b-a}{4 \arctan \sqrt{b / a}-\pi}=\frac{b-a}{2 \arcsin \frac{b-a}{b+a}}, \\ & P(a, a)=a, \end{aligned}I(a,a)=a;P:=P(a,b)=ba4arctanb/aπ=ba2arcsinbab+a,P(a,a)=a,
and are called the arithmetic, geometric, harmonic, logarithmic, identric means, respectively, the first Seiffert mean.
The above means are strictly comparable, namely
min < H < G < L < P < I < A < max . min < H < G < L < P < I < A < max . min < H < G < L < P < I < A < max.\min <H<G<L<P<I<A<\max .min<H<G<L<P<I<A<max.
The next section presents some definitions and preliminary results, and the last section contains the main result. Its proof is based on some heavy computations, and a computer algebra system may be very helpful.
We have used Maple and Maxima, which already offered good results in proving inequalities for means (see, for example, [3]). Note that all the symbolic computations are exact, because only polynomials with rational coefficients are involved. We would like to point out that the method used in this paper is easily adaptable to other 'stiff' inequalities involving real analytic functions, if they contain subexpressions with algebraic derivatives.
In particular, during the proof, we needed the Sturm sequence associated to a univariate polynomial, say p p ppp, in order to find the number of roots in intervals ( c , d c , d c,dc, dc,d ]. This can be obtained in Maple by
sturm ( sturmseq ( p , c , d ) ) sturm ( sturmseq ( p , c , d ) ) sturm(sturmseq(p,c,d))\operatorname{sturm}(\operatorname{sturmseq}(p, c, d))sturm(sturmseq(p,c,d))
or in Maxima by
nroot ( p , c , d ) nroot ( p , c , d ) nroot(p,c,d)\operatorname{nroot}(p, c, d)nroot(p,c,d)
both making use of exact (rational) arithmetic.

Definitions and preliminary results

At first we define the resultant mean-map of three means as in [4], where the properties of the resultant mean-map are studied.
Definition 1 Let m 1 , m 2 m 1 , m 2 m_(1),m_(2)m_{1}, m_{2}m1,m2, and m 3 m 3 m_(3)m_{3}m3 be three given symmetric means. For all a , b > 0 a , b > 0 a,b > 0a, b>0a,b>0, define the resultant mean-map of m 1 , m 2 m 1 , m 2 m_(1),m_(2)m_{1}, m_{2}m1,m2, and m 3 m 3 m_(3)m_{3}m3 as
R ( m 1 , m 2 , m 3 ) ( a , b ) = m 1 ( m 2 ( a , m 3 ( a , b ) ) , m 2 ( m 3 ( a , b ) , b ) ) . R m 1 , m 2 , m 3 ( a , b ) = m 1 m 2 a , m 3 ( a , b ) , m 2 m 3 ( a , b ) , b . R(m_(1),m_(2),m_(3))(a,b)=m_(1)(m_(2)(a,m_(3)(a,b)),m_(2)(m_(3)(a,b),b)).\mathcal{R}\left(m_{1}, m_{2}, m_{3}\right)(a, b)=m_{1}\left(m_{2}\left(a, m_{3}(a, b)\right), m_{2}\left(m_{3}(a, b), b\right)\right) .R(m1,m2,m3)(a,b)=m1(m2(a,m3(a,b)),m2(m3(a,b),b)).
Example 2 For m 1 = G , m 3 = A m 1 = G , m 3 = A m_(1)=G,m_(3)=Am_{1}=G, m_{3}=Am1=G,m3=A and m 2 = P m 2 = P m_(2)=Pm_{2}=Pm2=P we get
(1) R ( G , P , A ) ( a , b ) = | b a | 4 ( arcsin b a 3 a + b arcsin b a a + 3 b ) 1 / 2 (1) R ( G , P , A ) ( a , b ) = | b a | 4 arcsin b a 3 a + b arcsin b a a + 3 b 1 / 2 {:(1)R(G","P","A)(a","b)=(|b-a|)/(4)(arcsin((b-a)/(3a+b))arcsin((b-a)/(a+3b)))^(-1//2):}\begin{equation*} \mathcal{R}(G, P, A)(a, b)=\frac{|b-a|}{4}\left(\arcsin \frac{b-a}{3 a+b} \arcsin \frac{b-a}{a+3 b}\right)^{-1 / 2} \tag{1} \end{equation*}(1)R(G,P,A)(a,b)=|ba|4(arcsinba3a+barcsinbaa+3b)1/2
Definition 3 A symmetric mean m m mmm is said to be
(a) stable if R ( m , m , m ) = m R ( m , m , m ) = m R(m,m,m)=m\mathcal{R}(m, m, m)=mR(m,m,m)=m;
(b) stabilizable if there exist two nontrivial stable means m 1 m 1 m_(1)m_{1}m1 and m 2 m 2 m_(2)m_{2}m2 satisfying the relation R ( m 1 , m , m 2 ) = m R m 1 , m , m 2 = m R(m_(1),m,m_(2))=m\mathcal{R}\left(m_{1}, m, m_{2}\right)=mR(m1,m,m2)=m. We then say that m m mmm is ( m 1 , m 2 ) m 1 , m 2 (m_(1),m_(2))\left(m_{1}, m_{2}\right)(m1,m2)-stabilizable.
A study about the stability and stabilizability of the standard means was presented in [4]. For example, the arithmetic, geometric, and harmonic means A , G A , G A,GA, GA,G, and H H HHH are stable. The logarithmic mean L L LLL is ( H , A ) ( H , A ) (H,A)(H, A)(H,A)-stabilizable and ( A , G ) ( A , G ) (A,G)(A, G)(A,G)-stabilizable, and the identric mean I I III is ( G , A G , A G,AG, AG,A )-stabilizable.
The next definitions were formulated in [5].
Definition 4 Let m 1 , m 2 m 1 , m 2 m_(1),m_(2)m_{1}, m_{2}m1,m2 be two nontrivial stable comparable means. A mean m m mmm is called:
(a) ( m 1 , m 2 m 1 , m 2 m_(1),m_(2)m_{1}, m_{2}m1,m2 )-sub-stabilizable if R ( m 1 , m , m 2 ) m R m 1 , m , m 2 m R(m_(1),m,m_(2)) <= m\mathcal{R}\left(m_{1}, m, m_{2}\right) \leq mR(m1,m,m2)m and m m mmm is between m 1 m 1 m_(1)m_{1}m1 and m 2 m 2 m_(2)m_{2}m2;
(b) ( m 1 , m 2 m 1 , m 2 m_(1),m_(2)m_{1}, m_{2}m1,m2 )-super-stabilizable if m R ( m 1 , m , m 2 ) m R m 1 , m , m 2 m <= R(m_(1),m,m_(2))m \leq \mathcal{R}\left(m_{1}, m, m_{2}\right)mR(m1,m,m2) and m m mmm is between m 1 m 1 m_(1)m_{1}m1 and m 2 m 2 m_(2)m_{2}m2.
This definition extends that of stabilizability, in the sense that a mean m m mmm is ( m 1 , m 2 m 1 , m 2 m_(1),m_(2)m_{1}, m_{2}m1,m2 )stabilizable if and only if (a) and (b) hold.
Definition 5 Let m 1 , m 2 m 1 , m 2 m_(1),m_(2)m_{1}, m_{2}m1,m2 be two nontrivial stable comparable means. A mean m m mmm is called:
(a) strictly ( m 1 , m 2 m 1 , m 2 m_(1),m_(2)m_{1}, m_{2}m1,m2 )-sub-stabilizable if R ( m 1 , m , m 2 ) < m R m 1 , m , m 2 < m R(m_(1),m,m_(2)) < m\mathcal{R}\left(m_{1}, m, m_{2}\right)<mR(m1,m,m2)<m and m m mmm is strictly between m 1 m 1 m_(1)m_{1}m1 and m 2 m 2 m_(2)m_{2}m2;
(b) strictly ( m 1 , m 2 m 1 , m 2 m_(1),m_(2)m_{1}, m_{2}m1,m2 )-super-stabilizable if m < R ( m 1 , m , m 2 ) m < R m 1 , m , m 2 m < R(m_(1),m,m_(2))m<\mathcal{R}\left(m_{1}, m, m_{2}\right)m<R(m1,m,m2) and m m mmm is strictly between m 1 m 1 m_(1)m_{1}m1 and m 2 m 2 m_(2)m_{2}m2.
Example 6 [5] The geometric mean G G GGG is ( G , A G , A G,AG, AG,A )-super-stabilizable (but not strictly), and A A AAA is ( G , A G , A G,AG, AG,A )-sub-stabilizable.
The logarithmic mean L L LLL is strictly ( G , A G , A G,AG, AG,A )-super-stabilizable and strictly ( A , H A , H A,HA, HA,H )-substabilizable. The identric mean I I III is strictly ( A , G ) ( A , G ) (A,G)(A, G)(A,G)-sub-stabilizable.
It is not known if the first Seiffert mean P P PPP is stabilizable or not. Several inequalities related to Seiffert means can be found in [6-10] and the references therein.
In [5] it was proved that the first Seiffert mean P P PPP is strictly ( A , G A , G A,GA, GA,G )-sub-stabilizable. An open problem was proposed there, namely: prove or disprove that the first Seiffert mean P P PPP is strictly ( G , A G , A G,AG, AG,A )-super-stabilizable.
In what follows we shall prove that indeed the first Seiffert mean P P PPP is strictly ( G , A ) ( G , A ) (G,A)(G, A)(G,A) -super-stabilizable.

Main result

It is well known that G < P < A G < P < A G < P < AG<P<AG<P<A and both G G GGG and A A AAA are stable. We have to prove that P < R ( G , P , A ) P < R ( G , P , A ) P < R(G,P,A)P< \mathcal{R}(G, P, A)P<R(G,P,A), which, using (1), is equivalent with
b a 2 arcsin b a b + a < | b a | 4 ( arcsin b a 3 a + b arcsin b a a + 3 b ) 1 / 2 b a 2 arcsin b a b + a < | b a | 4 arcsin b a 3 a + b arcsin b a a + 3 b 1 / 2 (b-a)/(2arcsin((b-a)/(b+a))) < (|b-a|)/(4)(arcsin((b-a)/(3a+b))arcsin((b-a)/(a+3b)))^(-1//2)\frac{b-a}{2 \arcsin \frac{b-a}{b+a}}<\frac{|b-a|}{4}\left(\arcsin \frac{b-a}{3 a+b} \arcsin \frac{b-a}{a+3 b}\right)^{-1 / 2}ba2arcsinbab+a<|ba|4(arcsinba3a+barcsinbaa+3b)1/2
or
(2) 4 arcsin b a 3 a + b arcsin b a a + 3 b < ( arcsin b a b + a ) 2 (2) 4 arcsin b a 3 a + b arcsin b a a + 3 b < arcsin b a b + a 2 {:(2)4arcsin((b-a)/(3a+b))arcsin((b-a)/(a+3b)) < (arcsin((b-a)/(b+a)))^(2):}\begin{equation*} 4 \arcsin \frac{b-a}{3 a+b} \arcsin \frac{b-a}{a+3 b}<\left(\arcsin \frac{b-a}{b+a}\right)^{2} \tag{2} \end{equation*}(2)4arcsinba3a+barcsinbaa+3b<(arcsinbab+a)2
for all a , b > 0 a , b > 0 a,b > 0a, b>0a,b>0 with a b a b a!=ba \neq bab. Without restricting the generality, we may consider that b > a b > a b > ab>ab>a and after the substitution t = ( b a ) / ( b + a ) t = ( b a ) / ( b + a ) t=(b-a)//(b+a)t=(b-a) /(b+a)t=(ba)/(b+a) we reduce the problem to
(3) ( arcsin t ) 2 > 4 arcsin t 2 t arcsin t 2 + t (3) ( arcsin t ) 2 > 4 arcsin t 2 t arcsin t 2 + t {:(3)(arcsin t)^(2) > 4arcsin((t)/(2-t))arcsin((t)/(2+t)):}\begin{equation*} (\arcsin t)^{2}>4 \arcsin \frac{t}{2-t} \arcsin \frac{t}{2+t} \tag{3} \end{equation*}(3)(arcsint)2>4arcsint2tarcsint2+t
for all 0 < t < 1 0 < t < 1 0 < t < 10<t<10<t<1.
Theorem 7 The first Seiffert mean P is strictly ( G , A G , A G,AG, AG,A )-super-stabilizable.
Proof We have to prove that (3) holds for 0 < t < 1 0 < t < 1 0 < t < 10<t<10<t<1. To this aim we denote, for 0 t 1 0 t 1 0 <= t <= 10 \leq t \leq 10t1,
(4) α ( t ) = ( arcsin t ) 2 , β ( t ) = arcsin t 2 + t , γ ( t ) = arcsin t 2 t , (4) α ( t ) = ( arcsin t ) 2 , β ( t ) = arcsin t 2 + t , γ ( t ) = arcsin t 2 t , {:(4)alpha(t)=(arcsin t)^(2)","quad beta(t)=arcsin((t)/(2+t))","quad gamma(t)=arcsin((t)/(2-t))",":}\begin{equation*} \alpha(t)=(\arcsin t)^{2}, \quad \beta(t)=\arcsin \frac{t}{2+t}, \quad \gamma(t)=\arcsin \frac{t}{2-t}, \tag{4} \end{equation*}(4)α(t)=(arcsint)2,β(t)=arcsint2+t,γ(t)=arcsint2t,
and we shall prove that
(5) α ( t ) > 4 β ( t ) γ ( t ) (5) α ( t ) > 4 β ( t ) γ ( t ) {:(5)alpha(t) > 4beta(t)gamma(t):}\begin{equation*} \alpha(t)>4 \beta(t) \gamma(t) \tag{5} \end{equation*}(5)α(t)>4β(t)γ(t)
for all 0 < t < 1 0 < t < 1 0 < t < 10<t<10<t<1. For r = 0.995 r = 0.995 r=0.995r=0.995r=0.995, the inequality (5) is true on [ r , 1 ) [ r , 1 ) [r,1)[r, 1)[r,1) because the functions α , β α , β alpha,beta\alpha, \betaα,β, γ γ gamma\gammaγ are all increasing and for t r t r t >= rt \geq rtr
(6) α ( t ) 4 β ( t ) γ ( t ) α ( r ) 4 β ( 1 ) γ ( 1 ) = 0.027 > 0 . (6) α ( t ) 4 β ( t ) γ ( t ) α ( r ) 4 β ( 1 ) γ ( 1 ) = 0.027 > 0 . {:(6)alpha(t)-4beta(t)gamma(t) >= alpha(r)-4beta(1)gamma(1)=0.027 dots > 0.:}\begin{equation*} \alpha(t)-4 \beta(t) \gamma(t) \geq \alpha(r)-4 \beta(1) \gamma(1)=0.027 \ldots>0 . \tag{6} \end{equation*}(6)α(t)4β(t)γ(t)α(r)4β(1)γ(1)=0.027>0.
In order to prove that (5) is true also on ( 0 , r 0 , r 0,r0, r0,r ) we shall use series expansions up to 20th degree. We obtain
β ( t ) = p β ( t ) + O ( t 20 ) , γ ( t ) = p γ ( t ) + O ( t 20 ) β ( t ) = p β ( t ) + O t 20 , γ ( t ) = p γ ( t ) + O t 20 beta(t)=p_(beta)(t)+O(t^(20)),quad gamma(t)=p_(gamma)(t)+O(t^(20))\beta(t)=p_{\beta}(t)+O\left(t^{20}\right), \quad \gamma(t)=p_{\gamma}(t)+O\left(t^{20}\right)β(t)=pβ(t)+O(t20),γ(t)=pγ(t)+O(t20)
where
p β ( t ) = 1 2 t 1 4 t 2 + 7 48 t 3 3 32 t 4 + 83 1 , 280 t 5 73 1 , 536 t 6 + 523 14 , 336 t 7 119 4 , 096 t 8 + 14 , 051 589 , 824 t 9 13 , 103 655 , 360 t 10 + 98 , 601 5 , 767 , 168 t 11 15 , 565 1 , 048 , 576 t 12 + 1 , 423 , 159 109 , 051 , 904 t 13 1 , 361 , 617 117 , 440 , 512 t 14 + 10 , 461 , 043 1 , 006 , 632 , 960 t 15 1 , 259 , 743 134 , 217 , 728 t 16 + 623 , 034 , 403 73 , 014 , 444 , 032 t 17 603 , 217 , 979 77 , 309 , 411 , 328 t 18 + 4 , 681 , 655 , 741 652 , 835 , 028 , 992 t 19 p γ ( t ) = 1 2 t + 1 4 t 2 + 7 48 t 3 + 3 32 t 4 + 83 1 , 280 t 5 + 73 1 , 536 t 6 + 523 14 , 336 t 7 + 119 4 , 096 t 8 + 14 , 051 589 , 824 t 9 + 13 , 103 655 , 360 t 10 + 98 , 601 5 , 767 , 168 t 11 + 15 , 565 1 , 048 , 576 t 12 + 1 , 423 , 159 109 , 051 , 904 t 13 + 1 , 361 , 617 117 , 440 , 512 t 14 + 10 , 461 , 043 1 , 006 , 632 , 960 t 15 + 1 , 259 , 743 134 , 217 , 728 t 16 + 623 , 034 , 403 73 , 014 , 444 , 032 t 17 + 603 , 217 , 979 77 , 309 , 411 , 328 t 18 + 4 , 681 , 655 , 741 652 , 835 , 028 , 992 t 19 . p β ( t ) = 1 2 t 1 4 t 2 + 7 48 t 3 3 32 t 4 + 83 1 , 280 t 5 73 1 , 536 t 6 + 523 14 , 336 t 7 119 4 , 096 t 8 + 14 , 051 589 , 824 t 9 13 , 103 655 , 360 t 10 + 98 , 601 5 , 767 , 168 t 11 15 , 565 1 , 048 , 576 t 12 + 1 , 423 , 159 109 , 051 , 904 t 13 1 , 361 , 617 117 , 440 , 512 t 14 + 10 , 461 , 043 1 , 006 , 632 , 960 t 15 1 , 259 , 743 134 , 217 , 728 t 16 + 623 , 034 , 403 73 , 014 , 444 , 032 t 17 603 , 217 , 979 77 , 309 , 411 , 328 t 18 + 4 , 681 , 655 , 741 652 , 835 , 028 , 992 t 19 p γ ( t ) = 1 2 t + 1 4 t 2 + 7 48 t 3 + 3 32 t 4 + 83 1 , 280 t 5 + 73 1 , 536 t 6 + 523 14 , 336 t 7 + 119 4 , 096 t 8 + 14 , 051 589 , 824 t 9 + 13 , 103 655 , 360 t 10 + 98 , 601 5 , 767 , 168 t 11 + 15 , 565 1 , 048 , 576 t 12 + 1 , 423 , 159 109 , 051 , 904 t 13 + 1 , 361 , 617 117 , 440 , 512 t 14 + 10 , 461 , 043 1 , 006 , 632 , 960 t 15 + 1 , 259 , 743 134 , 217 , 728 t 16 + 623 , 034 , 403 73 , 014 , 444 , 032 t 17 + 603 , 217 , 979 77 , 309 , 411 , 328 t 18 + 4 , 681 , 655 , 741 652 , 835 , 028 , 992 t 19 . {:[p_(beta)(t)=(1)/(2)t-(1)/(4)t^(2)+(7)/(48)t^(3)-(3)/(32)t^(4)+(83)/(1,280)t^(5)-(73)/(1,536)t^(6)+(523)/(14,336)t^(7)-(119)/(4,096)t^(8)],[+(14,051)/(589,824)t^(9)-(13,103)/(655,360)t^(10)+(98,601)/(5,767,168)t^(11)-(15,565)/(1,048,576)t^(12)],[+(1,423,159)/(109,051,904)t^(13)-(1,361,617)/(117,440,512)t^(14)+(10,461,043)/(1,006,632,960)t^(15)-(1,259,743)/(134,217,728)t^(16)],[+(623,034,403)/(73,014,444,032)t^(17)-(603,217,979)/(77,309,411,328)t^(18)+(4,681,655,741)/(652,835,028,992)t^(19)],[p_(gamma)(t)=(1)/(2)t+(1)/(4)t^(2)+(7)/(48)t^(3)+(3)/(32)t^(4)+(83)/(1,280)t^(5)+(73)/(1,536)t^(6)+(523)/(14,336)t^(7)+(119)/(4,096)t^(8)],[+(14,051)/(589,824)t^(9)+(13,103)/(655,360)t^(10)+(98,601)/(5,767,168)t^(11)+(15,565)/(1,048,576)t^(12)],[+(1,423,159)/(109,051,904)t^(13)+(1,361,617)/(117,440,512)t^(14)+(10,461,043)/(1,006,632,960)t^(15)+(1,259,743)/(134,217,728)t^(16)],[+(623,034,403)/(73,014,444,032)t^(17)+(603,217,979)/(77,309,411,328)t^(18)+(4,681,655,741)/(652,835,028,992)t^(19).]:}\begin{aligned} p_{\beta}(t)= & \frac{1}{2} t-\frac{1}{4} t^{2}+\frac{7}{48} t^{3}-\frac{3}{32} t^{4}+\frac{83}{1,280} t^{5}-\frac{73}{1,536} t^{6}+\frac{523}{14,336} t^{7}-\frac{119}{4,096} t^{8} \\ & +\frac{14,051}{589,824} t^{9}-\frac{13,103}{655,360} t^{10}+\frac{98,601}{5,767,168} t^{11}-\frac{15,565}{1,048,576} t^{12} \\ & +\frac{1,423,159}{109,051,904} t^{13}-\frac{1,361,617}{117,440,512} t^{14}+\frac{10,461,043}{1,006,632,960} t^{15}-\frac{1,259,743}{134,217,728} t^{16} \\ & +\frac{623,034,403}{73,014,444,032} t^{17}-\frac{603,217,979}{77,309,411,328} t^{18}+\frac{4,681,655,741}{652,835,028,992} t^{19} \\ p_{\gamma}(t)= & \frac{1}{2} t+\frac{1}{4} t^{2}+\frac{7}{48} t^{3}+\frac{3}{32} t^{4}+\frac{83}{1,280} t^{5}+\frac{73}{1,536} t^{6}+\frac{523}{14,336} t^{7}+\frac{119}{4,096} t^{8} \\ & +\frac{14,051}{589,824} t^{9}+\frac{13,103}{655,360} t^{10}+\frac{98,601}{5,767,168} t^{11}+\frac{15,565}{1,048,576} t^{12} \\ & +\frac{1,423,159}{109,051,904} t^{13}+\frac{1,361,617}{117,440,512} t^{14}+\frac{10,461,043}{1,006,632,960} t^{15}+\frac{1,259,743}{134,217,728} t^{16} \\ & +\frac{623,034,403}{73,014,444,032} t^{17}+\frac{603,217,979}{77,309,411,328} t^{18}+\frac{4,681,655,741}{652,835,028,992} t^{19} . \end{aligned}pβ(t)=12t14t2+748t3332t4+831,280t5731,536t6+52314,336t71194,096t8+14,051589,824t913,103655,360t10+98,6015,767,168t1115,5651,048,576t12+1,423,159109,051,904t131,361,617117,440,512t14+10,461,0431,006,632,960t151,259,743134,217,728t16+623,034,40373,014,444,032t17603,217,97977,309,411,328t18+4,681,655,741652,835,028,992t19pγ(t)=12t+14t2+748t3+332t4+831,280t5+731,536t6+52314,336t7+1194,096t8+14,051589,824t9+13,103655,360t10+98,6015,767,168t11+15,5651,048,576t12+1,423,159109,051,904t13+1,361,617117,440,512t14+10,461,0431,006,632,960t15+1,259,743134,217,728t16+623,034,40373,014,444,032t17+603,217,97977,309,411,328t18+4,681,655,741652,835,028,992t19.
Table 1 The coefficients a 0 , a 1 , , a 20 a 0 , a 1 , , a 20 a_(0),a_(1),dots,a_(20)a_{0}, a_{1}, \ldots, a_{20}a0,a1,,a20
4,770,923,133,534,208 45,577,737,845,735,424 208,413,045,121,875,968
606,289,729,726,119,936 1,257,880,992,601,669,632 1,977,530,020,741,201,920
2,443,128,584,682,799,104 2,427,671,832,468,406,272 1,969,549,944,783,110,144
1,316,806,964,788,476,928 729,144,476,396,464,128 334,812,607,979,053,568
127,214,924,071,312,896 39,763,039,787,401,392 10,120,564,836,367,104
2,064,597,817,622,592 329,565,434,362,848 39,662,337,834,126
3,384,693,012,652 182,584,573,899 4,681,655,741
4,770,923,133,534,208 45,577,737,845,735,424 208,413,045,121,875,968 606,289,729,726,119,936 1,257,880,992,601,669,632 1,977,530,020,741,201,920 2,443,128,584,682,799,104 2,427,671,832,468,406,272 1,969,549,944,783,110,144 1,316,806,964,788,476,928 729,144,476,396,464,128 334,812,607,979,053,568 127,214,924,071,312,896 39,763,039,787,401,392 10,120,564,836,367,104 2,064,597,817,622,592 329,565,434,362,848 39,662,337,834,126 3,384,693,012,652 182,584,573,899 4,681,655,741| 4,770,923,133,534,208 | 45,577,737,845,735,424 | 208,413,045,121,875,968 | | :--- | :--- | :--- | | 606,289,729,726,119,936 | 1,257,880,992,601,669,632 | 1,977,530,020,741,201,920 | | 2,443,128,584,682,799,104 | 2,427,671,832,468,406,272 | 1,969,549,944,783,110,144 | | 1,316,806,964,788,476,928 | 729,144,476,396,464,128 | 334,812,607,979,053,568 | | 127,214,924,071,312,896 | 39,763,039,787,401,392 | 10,120,564,836,367,104 | | 2,064,597,817,622,592 | 329,565,434,362,848 | 39,662,337,834,126 | | 3,384,693,012,652 | 182,584,573,899 | 4,681,655,741 |
Table 2 The coefficients b 0 , b 1 , , b 19 b 0 , b 1 , , b 19 b_(0),b_(1),dots,b_(19)\boldsymbol{b}_{0}, \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{19}b0,b1,,b19
816,042,556,423 -8,304,263,424,095 57,076,977,341,817
-261,518,771,366,961 849,290,412,683,676 -2,026,905,939,920,124
3,601,042,197,273,780 -4,689,184,725,197,076 4,130,366,508,898,578
-1,578,461,017,820,258 -1,834,983,544,254,146 4,260,109,227,548,850
-4,661,988,848,655,060 3,484,106,242,692,852 -1,908,076,678,782,012
773,661,301,050,972 -227,689,188,034,785 46,209,023,561,673
-5,802,339,420,719 340,462,481,719
816,042,556,423 -8,304,263,424,095 57,076,977,341,817 -261,518,771,366,961 849,290,412,683,676 -2,026,905,939,920,124 3,601,042,197,273,780 -4,689,184,725,197,076 4,130,366,508,898,578 -1,578,461,017,820,258 -1,834,983,544,254,146 4,260,109,227,548,850 -4,661,988,848,655,060 3,484,106,242,692,852 -1,908,076,678,782,012 773,661,301,050,972 -227,689,188,034,785 46,209,023,561,673 -5,802,339,420,719 340,462,481,719 | 816,042,556,423 | -8,304,263,424,095 | 57,076,977,341,817 | | :--- | :--- | :--- | | -261,518,771,366,961 | 849,290,412,683,676 | -2,026,905,939,920,124 | | 3,601,042,197,273,780 | -4,689,184,725,197,076 | 4,130,366,508,898,578 | | -1,578,461,017,820,258 | -1,834,983,544,254,146 | 4,260,109,227,548,850 | | -4,661,988,848,655,060 | 3,484,106,242,692,852 | -1,908,076,678,782,012 | | 773,661,301,050,972 | -227,689,188,034,785 | 46,209,023,561,673 | | -5,802,339,420,719 | 340,462,481,719 | |
We shall use a slightly modified polynomial p ~ γ p ~ γ tilde(p)_(gamma)\tilde{p}_{\gamma}p~γ given by
p ~ γ ( t ) = p γ ( t ) + ( 1 / 6 ) t 19 . p ~ γ ( t ) = p γ ( t ) + ( 1 / 6 ) t 19 . tilde(p)_(gamma)(t)=p_(gamma)(t)+(1//6)t^(19).\tilde{p}_{\gamma}(t)=p_{\gamma}(t)+(1 / 6) t^{19} .p~γ(t)=pγ(t)+(1/6)t19.
Note that a term was added to p γ p γ p_(gamma)p_{\gamma}pγ, because it can be seen that γ ( t ) > p γ ( t ) γ ( t ) > p γ ( t ) gamma(t) > p_(gamma)(t)\gamma(t)>p_{\gamma}(t)γ(t)>pγ(t) for t > 0 t > 0 t > 0t>0t>0 sufficiently small. The coefficient 1 / 6 1 / 6 1//61 / 61/6 was found using some estimations which are omitted because they are not essential for the proof.
We shall prove that:
(i) β ( t ) < p β ( t ) , 0 < t < 1 β ( t ) < p β ( t ) , 0 < t < 1 beta(t) < p_(beta)(t),0 < t < 1\beta(t)<p_{\beta}(t), 0<t<1β(t)<pβ(t),0<t<1;
(ii) γ ( t ) < p ~ γ ( t ) , 0 < t < r γ ( t ) < p ~ γ ( t ) , 0 < t < r gamma(t) < tilde(p)_(gamma)(t),0 < t < r\gamma(t)<\tilde{p}_{\gamma}(t), 0<t<rγ(t)<p~γ(t),0<t<r;
(iii) 4 p β ( t ) p ~ γ ( t ) < α ( t ) , 0 < t < 1 4 p β ( t ) p ~ γ ( t ) < α ( t ) , 0 < t < 1 4p_(beta)(t) tilde(p)_(gamma)(t) < alpha(t),0 < t < 14 p_{\beta}(t) \tilde{p}_{\gamma}(t)<\alpha(t), 0<t<14pβ(t)p~γ(t)<α(t),0<t<1.
We denote by f 1 ( t ) = p β ( t ) β ( t ) , f 2 ( t ) = f 1 ( t ) = p β ( t ) 1 ( 2 + t ) 1 + t f 1 ( t ) = p β ( t ) β ( t ) , f 2 ( t ) = f 1 ( t ) = p β ( t ) 1 ( 2 + t ) 1 + t f_(1)(t)=p_(beta)(t)-beta(t),f_(2)(t)=f_(1)^(')(t)=p_(beta)^(')(t)-(1)/((2+t)sqrt(1+t))f_{1}(t)=p_{\beta}(t)-\beta(t), f_{2}(t)=f_{1}^{\prime}(t)=p_{\beta}^{\prime}(t)-\frac{1}{(2+t) \sqrt{1+t}}f1(t)=pβ(t)β(t),f2(t)=f1(t)=pβ(t)1(2+t)1+t. We substitute t = ( 1 + s ) 2 1 , 0 < s < 2 1 t = ( 1 + s ) 2 1 , 0 < s < 2 1 t=(1+s)^(2)-1,0 < s < sqrt2-1t=(1+ s)^{2}-1,0<s<\sqrt{2}-1t=(1+s)21,0<s<21, and we get f 2 ( ( 1 + s ) 2 1 ) = s 19 34 , 359 , 738 , 368 ( 2 + 2 s + s 2 ) ( 1 + s ) F 2 ( s ) f 2 ( 1 + s ) 2 1 = s 19 34 , 359 , 738 , 368 2 + 2 s + s 2 ( 1 + s ) F 2 ( s ) f_(2)((1+s)^(2)-1)=(s^(19))/(34,359,738,368(2+2s+s^(2))(1+s))F_(2)(s)f_{2}\left((1+s)^{2}-1\right)=\frac{s^{19}}{34,359,738,368\left(2+2 s+s^{2}\right)(1+s)} F_{2}(s)f2((1+s)21)=s1934,359,738,368(2+2s+s2)(1+s)F2(s), where F 2 ( s ) = n = 0 20 a n s n F 2 ( s ) = n = 0 20 a n s n F_(2)(s)=sum_(n=0)^(20)a_(n)s^(n)F_{2}(s)= \sum_{n=0}^{20} a_{n} s^{n}F2(s)=n=020ansn is a polynomial of 20 th degree whose coefficients are given in Table 1, a 0 , a 1 , a 2 a 0 , a 1 , a 2 a_(0),a_(1),a_(2)a_{0}, a_{1}, a_{2}a0,a1,a2 etc. in rows.
It follows that f 2 ( t ) > 0 f 2 ( t ) > 0 f_(2)(t) > 0f_{2}(t)>0f2(t)>0, because F 2 ( s ) F 2 ( s ) F_(2)(s)F_{2}(s)F2(s) has positive coefficients. Since f 1 ( 0 ) = 0 f 1 ( 0 ) = 0 f_(1)(0)=0f_{1}(0)=0f1(0)=0, we have f 1 ( t ) > 0 f 1 ( t ) > 0 f_(1)(t) > 0f_{1}(t)>0f1(t)>0 on ( 0,1 ) and (i) is proved.
We proceed similarly for g 1 ( t ) = p ~ γ ( t ) γ ( t ) , g 2 ( t ) = g 1 ( t ) = p ~ γ ( t ) 1 ( t 2 ) 1 t g 1 ( t ) = p ~ γ ( t ) γ ( t ) , g 2 ( t ) = g 1 ( t ) = p ~ γ ( t ) 1 ( t 2 ) 1 t g_(1)(t)= tilde(p)_(gamma)(t)-gamma(t),g_(2)(t)=g_(1)^(')(t)= tilde(p)_(gamma)^(')(t)-(1)/((t-2)sqrt(1-t))g_{1}(t)=\tilde{p}_{\gamma}(t)-\gamma(t), g_{2}(t)=g_{1}^{\prime}(t)=\tilde{p}_{\gamma}^{\prime}(t)-\frac{1}{(t-2) \sqrt{1-t}}g1(t)=p~γ(t)γ(t),g2(t)=g1(t)=p~γ(t)1(t2)1t.
We substitute t = 1 s 2 , 0 < s < 1 t = 1 s 2 , 0 < s < 1 t=1-s^(2),0 < s < 1t=1-s^{2}, 0<s<1t=1s2,0<s<1, and get g 2 ( 1 s 2 ) = 1 103 , 079 , 215 , 104 ( 1 + s 2 ) s G 2 ( s ) g 2 1 s 2 = 1 103 , 079 , 215 , 104 1 + s 2 s G 2 ( s ) g_(2)(1-s^(2))=(1)/(103,079,215,104(1+s^(2))s)G_(2)(s)g_{2}\left(1-s^{2}\right)=\frac{1}{103,079,215,104\left(1+s^{2}\right) s} G_{2}(s)g2(1s2)=1103,079,215,104(1+s2)sG2(s), where G 2 ( s ) = 103 , 079 , 215 , 104 + n = 0 19 b n s 2 n + 1 G 2 ( s ) = 103 , 079 , 215 , 104 + n = 0 19 b n s 2 n + 1 G_(2)(s)=-103,079,215,104+sum_(n=0)^(19)b_(n)s^(2n+1)G_{2}(s)= -103,079,215,104+\sum_{n=0}^{19} b_{n} s^{2 n+1}G2(s)=103,079,215,104+n=019bns2n+1 is a polynomial of 39 th degree, the coefficients b n b n b_(n)b_{n}bn being given in Table 2, three in a row.
By using the Sturm sequence for the polynomial G 2 ( s ) G 2 ( s ) G_(2)(s)G_{2}(s)G2(s) as stated at the end of the Introduction, both functions (in Maple and in Maxima) return two roots in ( 0,1 ]. Since G 2 ( 1 ) = 1 G 2 ( 1 ) = 1 G_(2)(1)=1G_{2}(1)=1G2(1)=1, we find that G 2 ( s ) G 2 ( s ) G_(2)(s)G_{2}(s)G2(s) has a unique root in ( 0,1 ). It follows that g 2 ( t ) g 2 ( t ) g_(2)(t)g_{2}(t)g2(t) has also a unique root t 1 ( 0 , 1 ) t 1 ( 0 , 1 ) t_(1)in(0,1)t_{1} \in(0,1)t1(0,1), hence g 2 ( t ) > 0 g 2 ( t ) > 0 g_(2)(t) > 0g_{2}(t)>0g2(t)>0 on ( 0 , t 1 ) 0 , t 1 (0,t_(1))\left(0, t_{1}\right)(0,t1), and g 2 ( t ) < 0 g 2 ( t ) < 0 g_(2)(t) < 0g_{2}(t)<0g2(t)<0 on ( t 1 , 1 ) t 1 , 1 (t_(1),1)\left(t_{1}, 1\right)(t1,1). Therefore g 1 ( t ) > min ( g 1 ( 0 ) , g 1 ( r ) ) g 1 ( t ) > min g 1 ( 0 ) , g 1 ( r ) g_(1)(t) > min(g_(1)(0),g_(1)(r))g_{1}(t)>\min \left(g_{1}(0), g_{1}(r)\right)g1(t)>min(g1(0),g1(r)) on ( 0 , r ) ( 0 , r ) (0,r)(0, r)(0,r). But g 1 ( 0 ) = 0 g 1 ( 0 ) = 0 g_(1)(0)=0g_{1}(0)=0g1(0)=0 and
g 1 ( r ) = 7 , 545 , 035 , 064 , 001 , 924 , 896 , 095 , 274 , 314 , 681 , 659 , 544 , 598 , 682 , 938 , 990 , 892 , 623 , 399 , 131 5 , 242 , 022 , 432 , 353 , 119 , 161 , 548 , 800 , 000 , 000 , 000 , 000 , 000 , 000 , 000 , 000 , 000 , 000 , 000 , 000 arcsin ( 199 201 ) = 0.00972 > 0 g 1 ( r ) = 7 , 545 , 035 , 064 , 001 , 924 , 896 , 095 , 274 , 314 , 681 , 659 , 544 , 598 , 682 , 938 , 990 , 892 , 623 , 399 , 131 5 , 242 , 022 , 432 , 353 , 119 , 161 , 548 , 800 , 000 , 000 , 000 , 000 , 000 , 000 , 000 , 000 , 000 , 000 , 000 , 000 arcsin 199 201 = 0.00972 > 0 {:[g_(1)(r)=(7,545,035,064,001,924,896,095,274,314,681,659,544,598,682,938,990,892,623,399,131)/(5,242,022,432,353,119,161,548,800,000,000,000,000,000,000,000,000,000,000,000,000)],[-arcsin((199)/(201))=0.00972 dots > 0]:}\begin{aligned} g_{1}(r)= & \frac{7,545,035,064,001,924,896,095,274,314,681,659,544,598,682,938,990,892,623,399,131}{5,242,022,432,353,119,161,548,800,000,000,000,000,000,000,000,000,000,000,000,000} \\ & -\arcsin \left(\frac{199}{201}\right)=0.00972 \ldots>0 \end{aligned}g1(r)=7,545,035,064,001,924,896,095,274,314,681,659,544,598,682,938,990,892,623,399,1315,242,022,432,353,119,161,548,800,000,000,000,000,000,000,000,000,000,000,000,000arcsin(199201)=0.00972>0
hence g 1 ( t ) > min ( g 1 ( 0 ) , g 1 ( r ) ) = 0 g 1 ( t ) > min g 1 ( 0 ) , g 1 ( r ) = 0 g_(1)(t) > min(g_(1)(0),g_(1)(r))=0g_{1}(t)>\min \left(g_{1}(0), g_{1}(r)\right)=0g1(t)>min(g1(0),g1(r))=0 and (ii) is proved.
We consider now the function h 1 ( t ) = α ( t ) 4 p β ( t ) p ~ γ ( t ) h 1 ( t ) = α ( t ) 4 p β ( t ) p ~ γ ( t ) h_(1)(t)=alpha(t)-4p_(beta)(t) tilde(p)_(gamma)(t)h_{1}(t)=\alpha(t)-4 p_{\beta}(t) \tilde{p}_{\gamma}(t)h1(t)=α(t)4pβ(t)p~γ(t) and its series expansion h 1 ( t ) = t 6 h 2 ( t ) + O ( t 40 ) h 1 ( t ) = t 6 h 2 ( t ) + O t 40 h_(1)(t)=t^(6)h_(2)(t)+O(t^(40))h_{1}(t)= t^{6} h_{2}(t)+O\left(t^{40}\right)h1(t)=t6h2(t)+O(t40), where
h 2 ( t ) = 1 / 48 + 11 480 t 2 + 547 26 , 880 t 4 + 199 11 , 520 t 6 + 207 , 401 14 , 192 , 640 t 8 + 920 , 021 73 , 801 , 728 t 10 + 95 , 240 , 443 8 , 856 , 207 , 360 t 12 8 , 128 , 804 , 483 25 , 092 , 587 , 520 t 14 + 1 / 6 t 15 155 , 266 , 321 , 334 , 306 , 053 1 , 999 , 672 , 863 , 904 , 235 , 520 t 16 + 1 / 16 t 17 2 , 624 , 741 , 122 , 147 , 393 , 885 110 , 381 , 942 , 087 , 513 , 800 , 704 t 18 + 73 2 , 304 t 19 374 , 493 , 942 , 658 , 190 , 094 , 451 58 , 870 , 369 , 113 , 340 , 693 , 708 , 800 t 20 + 119 6 , 144 t 21 + 55 , 315 , 568 , 609 , 924 , 639 , 053 117 , 740 , 738 , 226 , 681 , 387 , 417 , 600 t 22 + 13 , 103 983 , 040 t 23 + 34 , 201 , 104 , 415 , 289 , 943 , 432 , 424 , 777 9 , 833 , 706 , 456 , 692 , 429 , 477 , 117 , 952 , 000 t 24 + 15 , 565 1 , 572 , 864 t 25 + 38 , 113 , 578 , 427 , 551 , 231 , 317 , 881 7 , 820 , 295 , 659 , 001 , 835 , 851 , 612 , 160 t 26 + 1 , 361 , 617 176 , 160 , 768 t 27 + 50 , 378 , 210 , 487 , 327 , 721 , 746 , 099 , 089 9 , 147 , 580 , 300 , 695 , 808 , 976 , 458 , 088 , 448 t 28 + 1 , 259 , 743 201 , 326 , 592 t 29 + 82 , 855 , 982 , 945 , 562 , 549 , 731 , 871 , 465 , 739 14 , 407 , 438 , 973 , 595 , 899 , 137 , 921 , 489 , 305 , 600 t 30 + 603 , 217 , 979 115 , 964 , 116 , 992 t 31 + 47 , 775 , 326 , 983 , 451 , 755 , 017 , 721 , 677 , 497 8 , 258 , 730 , 450 , 127 , 109 , 454 , 998 , 326 , 476 , 800 t 32 h 2 ( t ) = 1 / 48 + 11 480 t 2 + 547 26 , 880 t 4 + 199 11 , 520 t 6 + 207 , 401 14 , 192 , 640 t 8 + 920 , 021 73 , 801 , 728 t 10 + 95 , 240 , 443 8 , 856 , 207 , 360 t 12 8 , 128 , 804 , 483 25 , 092 , 587 , 520 t 14 + 1 / 6 t 15 155 , 266 , 321 , 334 , 306 , 053 1 , 999 , 672 , 863 , 904 , 235 , 520 t 16 + 1 / 16 t 17 2 , 624 , 741 , 122 , 147 , 393 , 885 110 , 381 , 942 , 087 , 513 , 800 , 704 t 18 + 73 2 , 304 t 19 374 , 493 , 942 , 658 , 190 , 094 , 451 58 , 870 , 369 , 113 , 340 , 693 , 708 , 800 t 20 + 119 6 , 144 t 21 + 55 , 315 , 568 , 609 , 924 , 639 , 053 117 , 740 , 738 , 226 , 681 , 387 , 417 , 600 t 22 + 13 , 103 983 , 040 t 23 + 34 , 201 , 104 , 415 , 289 , 943 , 432 , 424 , 777 9 , 833 , 706 , 456 , 692 , 429 , 477 , 117 , 952 , 000 t 24 + 15 , 565 1 , 572 , 864 t 25 + 38 , 113 , 578 , 427 , 551 , 231 , 317 , 881 7 , 820 , 295 , 659 , 001 , 835 , 851 , 612 , 160 t 26 + 1 , 361 , 617 176 , 160 , 768 t 27 + 50 , 378 , 210 , 487 , 327 , 721 , 746 , 099 , 089 9 , 147 , 580 , 300 , 695 , 808 , 976 , 458 , 088 , 448 t 28 + 1 , 259 , 743 201 , 326 , 592 t 29 + 82 , 855 , 982 , 945 , 562 , 549 , 731 , 871 , 465 , 739 14 , 407 , 438 , 973 , 595 , 899 , 137 , 921 , 489 , 305 , 600 t 30 + 603 , 217 , 979 115 , 964 , 116 , 992 t 31 + 47 , 775 , 326 , 983 , 451 , 755 , 017 , 721 , 677 , 497 8 , 258 , 730 , 450 , 127 , 109 , 454 , 998 , 326 , 476 , 800 t 32 {:[h_(2)(t)=1//48+(11)/(480)t^(2)+(547)/(26,880)t^(4)+(199)/(11,520)t^(6)+(207,401)/(14,192,640)t^(8)+(920,021)/(73,801,728)t^(10)],[+(95,240,443)/(8,856,207,360)t^(12)-(8,128,804,483)/(25,092,587,520)t^(14)+1//6t^(15)],[-(155,266,321,334,306,053)/(1,999,672,863,904,235,520)t^(16)],[+1//16t^(17)-(2,624,741,122,147,393,885)/(110,381,942,087,513,800,704)t^(18)+(73)/(2,304)t^(19)],[-(374,493,942,658,190,094,451)/(58,870,369,113,340,693,708,800)t^(20)],[+(119)/(6,144)t^(21)+(55,315,568,609,924,639,053)/(117,740,738,226,681,387,417,600)t^(22)+(13,103)/(983,040)t^(23)],[+(34,201,104,415,289,943,432,424,777)/(9,833,706,456,692,429,477,117,952,000)t^(24)+(15,565)/(1,572,864)t^(25)],[+(38,113,578,427,551,231,317,881)/(7,820,295,659,001,835,851,612,160)t^(26)],[+(1,361,617)/(176,160,768)t^(27)+(50,378,210,487,327,721,746,099,089)/(9,147,580,300,695,808,976,458,088,448)t^(28)],[+(1,259,743)/(201,326,592)t^(29)+(82,855,982,945,562,549,731,871,465,739)/(14,407,438,973,595,899,137,921,489,305,600)t^(30)],[+(603,217,979)/(115,964,116,992)t^(31)+(47,775,326,983,451,755,017,721,677,497)/(8,258,730,450,127,109,454,998,326,476,800)t^(32)]:}\begin{aligned} h_{2}(t)= & 1 / 48+\frac{11}{480} t^{2}+\frac{547}{26,880} t^{4}+\frac{199}{11,520} t^{6}+\frac{207,401}{14,192,640} t^{8}+\frac{920,021}{73,801,728} t^{10} \\ & +\frac{95,240,443}{8,856,207,360} t^{12}-\frac{8,128,804,483}{25,092,587,520} t^{14}+1 / 6 t^{15} \\ & -\frac{155,266,321,334,306,053}{1,999,672,863,904,235,520} t^{16} \\ & +1 / 16 t^{17}-\frac{2,624,741,122,147,393,885}{110,381,942,087,513,800,704} t^{18}+\frac{73}{2,304} t^{19} \\ & -\frac{374,493,942,658,190,094,451}{58,870,369,113,340,693,708,800} t^{20} \\ & +\frac{119}{6,144} t^{21}+\frac{55,315,568,609,924,639,053}{117,740,738,226,681,387,417,600} t^{22}+\frac{13,103}{983,040} t^{23} \\ & +\frac{34,201,104,415,289,943,432,424,777}{9,833,706,456,692,429,477,117,952,000} t^{24}+\frac{15,565}{1,572,864} t^{25} \\ & +\frac{38,113,578,427,551,231,317,881}{7,820,295,659,001,835,851,612,160} t^{26} \\ & +\frac{1,361,617}{176,160,768} t^{27}+\frac{50,378,210,487,327,721,746,099,089}{9,147,580,300,695,808,976,458,088,448} t^{28} \\ & +\frac{1,259,743}{201,326,592} t^{29}+\frac{82,855,982,945,562,549,731,871,465,739}{14,407,438,973,595,899,137,921,489,305,600} t^{30} \\ & +\frac{603,217,979}{115,964,116,992} t^{31}+\frac{47,775,326,983,451,755,017,721,677,497}{8,258,730,450,127,109,454,998,326,476,800} t^{32} \end{aligned}h2(t)=1/48+11480t2+54726,880t4+19911,520t6+207,40114,192,640t8+920,02173,801,728t10+95,240,4438,856,207,360t128,128,804,48325,092,587,520t14+1/6t15155,266,321,334,306,0531,999,672,863,904,235,520t16+1/16t172,624,741,122,147,393,885110,381,942,087,513,800,704t18+732,304t19374,493,942,658,190,094,45158,870,369,113,340,693,708,800t20+1196,144t21+55,315,568,609,924,639,053117,740,738,226,681,387,417,600t22+13,103983,040t23+34,201,104,415,289,943,432,424,7779,833,706,456,692,429,477,117,952,000t24+15,5651,572,864t25+38,113,578,427,551,231,317,8817,820,295,659,001,835,851,612,160t26+1,361,617176,160,768t27+50,378,210,487,327,721,746,099,0899,147,580,300,695,808,976,458,088,448t28+1,259,743201,326,592t29+82,855,982,945,562,549,731,871,465,73914,407,438,973,595,899,137,921,489,305,600t30+603,217,979115,964,116,992t31+47,775,326,983,451,755,017,721,677,4978,258,730,450,127,109,454,998,326,476,800t32
Using the Sturm sequence as before we find that the polynomial h 2 h 2 h_(2)h_{2}h2 has no roots in ( 0,1 ) and t 6 h 2 ( t ) > 0 t 6 h 2 ( t ) > 0 t^(6)h_(2)(t) > 0t^{6} h_{2}(t)>0t6h2(t)>0.
Now we write h 1 ( t ) = t 6 h 2 ( t ) + n = 40 q n t n h 1 ( t ) = t 6 h 2 ( t ) + n = 40 q n t n h_(1)(t)=t^(6)h_(2)(t)+sum_(n=40)^(oo)q_(n)t^(n)h_{1}(t)=t^{6} h_{2}(t)+\sum_{n=40}^{\infty} q_{n} t^{n}h1(t)=t6h2(t)+n=40qntn. We notice that all the coefficients q n , n 40 q n , n 40 q_(n),n >= 40q_{n}, n \geq 40qn,n40 are in fact the coefficients of the series expansion of α ( t ) = ( arcsin t ) 2 α ( t ) = ( arcsin t ) 2 alpha(t)=(arcsin t)^(2)\alpha(t)=(\arcsin t)^{2}α(t)=(arcsint)2, due to the fact that p β p ~ γ p β p ~ γ p_(beta) tilde(p)_(gamma)p_{\beta} \tilde{p}_{\gamma}pβp~γ is polynomial of degree less that 40 . It is known that these are all positive (those of odd order being null), namely
q 2 k = 2 2 k 2 ( ( k 1 ) ! ) 2 ( 2 k 1 ) ! k q 2 k = 2 2 k 2 ( ( k 1 ) ! ) 2 ( 2 k 1 ) ! k q_(2k)=(2^(2k-2)((k-1)!)^(2))/((2k-1)!k)q_{2 k}=\frac{2^{2 k-2}((k-1)!)^{2}}{(2 k-1)!k}q2k=22k2((k1)!)2(2k1)!k
(see [11], p.61).
It follows that h 1 ( t ) > 0 h 1 ( t ) > 0 h_(1)(t) > 0h_{1}(t)>0h1(t)>0, hence (iii) holds.
From (i)-(iii) it follows that (5) holds also on ( 0 , r 0 , r 0,r0, r0,r ) and the proof is complete.
Remark 8 We have chosen the form of the polynomials p β , p γ p β , p γ p_(beta),p_(gamma)p_{\beta}, p_{\gamma}pβ,pγ and p ~ γ p ~ γ tilde(p)_(gamma)\tilde{p}_{\gamma}p~γ dealing with three parameters: the degree of the polynomials m ( m = 19 ) , r ( 0 , 1 ) ( r = 0.995 ) m ( m = 19 ) , r ( 0 , 1 ) ( r = 0.995 ) m(m=19),r in(0,1)(r=0.995)m(m=19), r \in(0,1)(r=0.995)m(m=19),r(0,1)(r=0.995) and the coefficient c c ccc of the supplementary term in p ~ γ ( c = 1 / 6 ) p ~ γ ( c = 1 / 6 ) tilde(p)_(gamma)(c=1//6)\tilde{p}_{\gamma}(c=1 / 6)p~γ(c=1/6). The value for r r rrr has been determined so that (6) is true, and the degree of the polynomials not too high (which would happened if we let r = 1 r = 1 r=1r=1r=1 ). The parameter r r rrr being fixed, c c ccc was related only to m m mmm, in such a way that (ii) to be true. Finally, the choice of the three parameters must make (iii) to be fulfilled.
The tests we performed showed that the degree of the polynomials cannot be less than 19, maybe this can be achieved by modifying slightly r r rrr, but it seems that the degree cannot be much smaller.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors jointly worked, read and approved the final manuscript.

Author details

1 1 ^(1){ }^{1}1 T. Popoviciu Institute of Numerical Analysis, Romanian Academy, Fantanele 53, Cluj-Napoca, România. 2 2 ^(2){ }^{2}2 Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 1 Kogălniceanu, Cluj-Napoca, 400084, România.

Acknowledgements

The authors would like to express their gratitude to the referees for the helpful suggestions.
Received: 6 March 2014 Accepted: 29 April 2014 Published: 13 May 2014

References

  1. Raïssouli, M, Sándor, J: On a method of construction of new means with applications. J. Inequal. Appl. 2013, 89 (2013)
  2. Bullen, P: Handbook of Means and Their Inequalities. Kluwer Academic, Dordrecht (2003)
  3. Anisiu, M-C, Anisiu, V: Logarithmic mean and weighted sum of geometric and anti-harmonic means. Rev. Anal. Numér. Théor. Approx. 41(2), 95-98 (2012)
  4. Raïssouli, M: Stability and stabilizability for means. Appl. Math. E-Notes 11, 159-174 (2011)
  5. Raïssouli, M, Sándor, J: Sub-stabilizability and super-stabilizability for bivariate means. J. Inequal. Appl. 2014, 28 (2014)
  6. Chu, Y-M, Wang, M-K, Wang, Z-K: An optimal double inequality between Seiffert and geometric means. J. Appl. Math. 2011, 261237 (2011)
  7. Chu, Y-M, Wang, M-K, Wang, Z-K: A best-possible inequality between Seiffert and harmonic means. J. Inequal. Appl. 2011, 94 (2011)
  8. Gong, W-M, Song, Y-Q, Wang, M-K, Chu, Y-M: A sharp double inequality between Seiffert, arithmetic, and geometric means. Abstr. Appl. Anal. 2012, 684384 (2012)
  9. Song, Y-Q, Qian, W-M, Jiang, Y-L, Chu, Y-M: Optimal lower generalized logarithmic mean bound for the Seiffert mean. J. Appl. Math. 2013, 273653 (2013)
  10. He, Z-Y, Qian, W-M, Jiang, Y-L, Song, Y-Q, Chu, Y-M: Bounds for the combinations of Neuman-Sándor, arithmetic, and second Seiffert means in terms of contraharmonic mean. Abstr. Appl. Anal. 2013, 903982 (2013)
  11. Gradshteyn, I, Ryzhik, I: Table of Integrals, Series and Products. Academic Press, Amsterdam (2007)

10.1186/1029-242X-2014-185

Cite this article as: Anisiu and Anisiu: The first Seiffert mean is strictly ( G , A G , A G,AG, AG,A )-super-stabilizable. Journal of Inequalities and Applications 2014, 2014:185

Submit your manuscript to a SpringerOpen ® ®  ^("® "){ }^{\text {® }}®  journal and benefit from:

  • Convenient online submission
  • Rigorous peer review
  • Immediate publication on acceptance
  • Open access: articles freely available online
  • High visibility within the field
  • Retaining the copyright to your article
Submit your next manuscript at darr\downarrow springeropen.com
2014

Related Posts