Abstract
The paper is centered on the study of a class of linear positive operators of discrete type introduced in 1983 by D. D. Stancu. These operators depend on a non-negative integer parameter r and on two real parameters α, β. In this note we use the divided differences as fundamental mathematical tools in the investigation of the monotonicity properties of this class of operators.
Authors
Octavian Agratini
Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
approximation process; Stancu polynomial; divided difference; variation diminishing property; quadrature formula
Paper coordinates
O. Agratini, Application of divided differences to the study of monotonicity of a sequence of D.D. Stancu polynomials, Revue d’Analyse Numerique et de Theorie de l’Approximation, 25 (1996) nos. 1-2, pp. 3-10.
About this paper
Journal
Revue d’Analyse Numerique et de Theorie de l’Approximation
Publisher Name
Publishing House of The Romanian Academy
Print ISSN
2501-059X
Online ISSN
2457-6794
google scholar link
[1] O. Agratini, On the monotonicity of a sequence of Stancu-Bernstein type operators, Studia Univ.Babes-Bolyai, Mathematica, 42 (1997), 1
[2] T. Popoviciu, Les fonctions convexes, Actualites Sci. Ind. No. 992 (1994).
[3] J.I. Schoenberg, On spline fonctions, inequalities (Sympsium at Wright-Patterson Air Force Base, 1965) Academic Press, New York, 1967, 255-291.
[4] D.D. Stancu, On the monotonicity of the sequence formed by the first order derivatives of the Bernstein polynomials, Math. Zeitschr 98 (1967), 46-51.
[5] D.D. Stancu, Asupra unei generalizări a polinoamelor Bernstein, Studia Univ. Babeș-Bolyai, 14 (1969), fasc. 2, 31-45.
[6] D.D. Stancu, Approximation of functions by means of a new generalized Bernstein operators, Calcolo, vol. 20 (1983), fasc. 2, 211-229.