Given a Cesaro-convergent sequence of real numbers \((a_{n}% )_{n\in \mathbb{N}}\), a sequence \((\varphi_{n})_{n\in \mathbb{N}}\) of operators is defined on the Banach space \(\mathcal{R}(I,F)\) of regular functions defined on \(I=[0,1]\) and having values in a Banach space \(F\),%
\[
\varphi_{n}\left( f\right) =\frac{1}{n}\sum_{k=1}^{n}a_{k}f\left(\tfrac
{k}{n}\right) .
\]
It is proved that if, in addition, the sequence \(\left( \tfrac{\left \vert a_{1}\right \vert +\ldots \left \vert a_{n}\right \vert }{n}\right)\) is bounded, the \(\varphi_{n}\left( f\right)\) converges to \(a\cdot f_{0}^{1}f\), where \(a=lim_{n\infty1}\tfrac{\left \vert a_{1}\right \vert +\ldots+\left \vert a_{n}\right \vert }{n}\). The converse of this statement is also true. Another result is that the supplementary condition can be dropped if the operators are considered on the space \(C^{1}(I,F)\).
Authors
Mira-Cristiana Anisiu
Tiberiu Popoviciu Institute of Numerical Analysis Cluj-Napoca, Romania“
Valeriu Anisiu Babes-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania,
Keywords
Linearoperators;Cesaro-convergentsequences.
Paper coordinates
M.-C. Anisiu, V. Anisiu, Sequences of linear operators related to Cesàro-convergent sequences, Rev. Anal. Numér. Théor. Approx. 31 (2) (2002), 139-145
SEQUENCES OF LINEAR OPERATORS
RELATED TO CESÀRO - CONVERGENT SEQUENCES
MIRA-CRISTIANA ANISIU* and VALERIU ANISIU ^(†){ }^{\dagger}
Abstract
Given a Cesàro-convergent sequence of real numbers (a_(n))_(n inN)\left(a_{n}\right)_{n \in \mathbb{N}}, a sequence (varphi_(n))_(n inN)\left(\varphi_{n}\right)_{n \in \mathbb{N}} of operators is defined on the Banach space R(I,F)\mathcal{R}(I, F) of regular functions defined on I=[0,1]I=[0,1] and having values in a Banach space FF, varphi_(n)(f)=(1)/(n)sum_(k=1)^(n)a_(k)f((k)/(n)).\varphi_{n}(f)=\frac{1}{n} \sum_{k=1}^{n} a_{k} f\left(\frac{k}{n}\right) .
It is proved that if, in addition, the sequence ((|a_(1)|+dots+|a_(n)|)/(n))_(n inN)\left(\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}\right)_{n \in \mathbb{N}} is bounded, then varphi_(n)(f)\varphi_{n}(f) converges to a*int_(0)^(1)fa \cdot \int_{0}^{1} f, where a=lim_(n rarr oo)(a_(1)+dots+a_(n))/(n)a=\lim _{n \rightarrow \infty} \frac{a_{1}+\ldots+a_{n}}{n}. The converse of this statement is also true. Another result is that the supplementary condition can be dropped if the operators are considered on the space C^(1)(I,F)\mathcal{C}^{1}(I, F).
MSC 2000. 47B38, 26E60.
Keywords. Linear operators, Cesàro-convergent sequences.
1. INTRODUCTION
Let (a_(n))_(n inN)\left(a_{n}\right)_{n \in \mathbb{N}} be a sequence of real numbers. It will be called Cesàro-convergent if the sequence of its Cesàro (arithmetic) means is convergent, i.e.
For x inR,|__ x __|x \in \mathbb{R},\lfloor x\rfloor will denote the greatest integer number n <= xn \leq x (the integer part of x)x).
Given the interval I=[0,1]I=[0,1] and a Banach space F!={0}F \neq\{0\}, we denote by B(I,F)\mathcal{B}(I, F) the Banach space of bounded functions f:I rarr Ff: I \rightarrow F endowed with the sup norm. The space B(I,F)\mathcal{B}(I, F) contains as a subspace the set of "step-functions" E(I,F)={f:I rarr F:EEt_(0),dots,t_(n)in I,t_(0)=0 < t_(1) < dots < t_(n)=1,EEu_(k)in F:}\mathcal{E}(I, F)=\left\{f: I \rightarrow F: \exists t_{0}, \ldots, t_{n} \in I, t_{0}=0<t_{1}<\ldots<t_{n}=1, \exists u_{k} \in F\right. so that {:f|_((t_(k-1),t_(k)))=u_(k),k=1,dots,n}\left.\left.f\right|_{\left(t_{k-1}, t_{k}\right)}=u_{k}, k=1, \ldots, n\right\}. In fact each f inE(I,F)f \in \mathcal{E}(I, F) is a finite sum of functions having the form chi_([alpha,beta])*u\chi_{[\alpha, \beta]} \cdot u, where 0 <= alpha <= beta <= 1,u in F0 \leq \alpha \leq \beta \leq 1, u \in F and chi_([alpha,beta])\chi_{[\alpha, \beta]} is the characteristic function of the interval [alpha,beta][\alpha, \beta]. We denote by R(I,F)\mathcal{R}(I, F) the Banach space of regular functions (which admit side limits at each t in It \in I ), endowed with the uniform norm ||f||=s u p_(t in[0,1])||f(t)||\|f\|=\sup _{t \in[0,1]}\|f(t)\|. We mention that R(I,F)\mathcal{R}(I, F) is the closure in B(I,F)\mathcal{B}(I, F) of the subspace E(I,F)\mathcal{E}(I, F), and it contains the
Banach space of continuous functions C(I,F)\mathcal{C}(I, F). More details on these spaces of functions are to be found in [3, p. 137].
We define a sequence of operators associated to (a_(n))_(n inN)\left(a_{n}\right)_{n \in \mathbb{N}}, namely varphi_(n)\varphi_{n} : R(I,F)rarr F,n inN\mathcal{R}(I, F) \rightarrow F, n \in \mathbb{N}
hence varphi_(n)\varphi_{n} is also continuous. To obtain the norm of varphi_(n)\varphi_{n}, we use the inequality (3) and the function
f_(0)(t)={[(signa_(k))u","," for "t=(k)/(n)","k=1","dots","n],[0","," otherwise "]:}f_{0}(t)= \begin{cases}\left(\operatorname{sign} a_{k}\right) u, & \text { for } t=\frac{k}{n}, k=1, \ldots, n \\ 0, & \text { otherwise }\end{cases}
where u in Fu \in F and ||u||=1\|u\|=1. We have f_(0)inE(I,F)subeR(I,F),||f_(0)||=1f_{0} \in \mathcal{E}(I, F) \subseteq \mathcal{R}(I, F),\left\|f_{0}\right\|=1 and varphi_(n)(f_(0))=((1)/(n)sum_(k=1)^(n)|a_(k)|)*u\varphi_{n}\left(f_{0}\right)=\left(\frac{1}{n} \sum_{k=1}^{n}\left|a_{k}\right|\right) \cdot u, hence the equality 22 follows.
2. MAIN RESULTS
We are interested in finding conditions on the sequence (a_(n))_(n inN)\left(a_{n}\right)_{n \in \mathbb{N}} in order to obtain the convergence of the sequence of linear operators (1). The theorem below guarantees the convergence of (varphi_(n)(f))_(n inN)\left(\varphi_{n}(f)\right)_{n \in \mathbb{N}} for each regular function f inF(I,F)f \in \mathcal{F}(I, F). Beside the condition of Cesàro-convergence for (a_(n))_(n inN)\left(a_{n}\right)_{n \in \mathbb{N}}, the boundedness of a certain sequence related to this is imposed.
Theorem 2. Let there be given a regular function f inR(I,F)f \in \mathcal{R}(I, F) and a sequence (a_(n))_(n inN)\left(a_{n}\right)_{n \in \mathbb{N}} of real numbers satisfying the conditions:
(a_(n))_(n inN)\left(a_{n}\right)_{n \in \mathbb{N}} is Cesàro-convergent to a (lim_(n rarr oo)(a_(1)+dots+a_(n))/(n)=a)\left(\lim _{n \rightarrow \infty} \frac{a_{1}+\ldots+a_{n}}{n}=a\right);
the sequence ((|a_(1)|+dots+|a_(n)|)/(n))_(n inN)\left(\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}\right)_{n \in \mathbb{N}} is bounded.
Then the sequence (varphi_(n)(f))_(n inN)\left(\varphi_{n}(f)\right)_{n \in \mathbb{N}} is convergent and
Proof. At first we shall prove (4) for functions ff of the form
{:(5)f=chi_([alpha,beta])*u","" where "0 <= alpha <= beta <= 1","u in F". ":}\begin{equation*}
f=\chi_{[\alpha, \beta]} \cdot u, \text { where } 0 \leq \alpha \leq \beta \leq 1, u \in F \text {. } \tag{5}
\end{equation*}
We have
varphi_(n)(f)=((1)/(n)sum_({:[k inN],[alpha n <= k <= beta n]:})a_(k))*u=((1)/(n)sum_({:[k inN],[k <= beta n]:})a_(k))*u-((1)/(n)sum_({:[k inN],[k < alpha n]:})a_(k))*u.\varphi_{n}(f)=\left(\frac{1}{n} \sum_{\substack{k \in \mathbb{N} \\ \alpha n \leq k \leq \beta n}} a_{k}\right) \cdot u=\left(\frac{1}{n} \sum_{\substack{k \in \mathbb{N} \\ k \leq \beta n}} a_{k}\right) \cdot u-\left(\frac{1}{n} \sum_{\substack{k \in \mathbb{N} \\ k<\alpha n}} a_{k}\right) \cdot u .
If alpha=0\alpha=0 the conclusion follows obviously.
For alpha > 0\alpha>0 we denote a_(n)^(**)=(a_(1)+dots+a_(n))/(n)a_{n}^{*}=\frac{a_{1}+\ldots+a_{n}}{n} and we write the two sums in the above formula as
sum_({:[k inN],[k <= beta n]:})a_(k)=|__ beta n __|*a_(|__ beta n __|)^(**),quadsum_({:[k inN],[k < alpha n]:})a_(k)=|__ alpha n __|*a_(|__ alpha n __|)^(**)-a_(|__ alpha n __|)*theta_(n)\sum_{\substack{k \in \mathbb{N} \\ k \leq \beta n}} a_{k}=\lfloor\beta n\rfloor \cdot a_{\lfloor\beta n\rfloor}^{*}, \quad \sum_{\substack{k \in \mathbb{N} \\ k<\alpha n}} a_{k}=\lfloor\alpha n\rfloor \cdot a_{\lfloor\alpha n\rfloor}^{*}-a_{\lfloor\alpha n\rfloor} \cdot \theta_{n}
where
theta_(n)={[1","" for "alpha n inN],[0","" otherwise "]:}\theta_{n}=\left\{\begin{array}{l}
1, \text { for } \alpha n \in \mathbb{N} \\
0, \text { otherwise }
\end{array}\right.
We finally obtain
varphi_(n)(f)=((|__ beta n __|)/(n)*a_(|__ beta n __|)^(**)-(|__ alpha n __|)/(n)*a_(|__ alpha n __|)^(**)+(a_(|__ alpha n __|))/(n)*theta_(n))*u.\varphi_{n}(f)=\left(\frac{\lfloor\beta n\rfloor}{n} \cdot a_{\lfloor\beta n\rfloor}^{*}-\frac{\lfloor\alpha n\rfloor}{n} \cdot a_{\lfloor\alpha n\rfloor}^{*}+\frac{a_{\lfloor\alpha n\rfloor}}{n} \cdot \theta_{n}\right) \cdot u .
We have lim_(n rarr oo)a_(|__ alpha n __|)^(**)=a\lim _{n \rightarrow \infty} a_{\lfloor\alpha n\rfloor}^{*}=a; but (a_(n))/(n)=a_(n)^(**)-(1-(1)/(n))a_(n-1)^(**)\frac{a_{n}}{n}=a_{n}^{*}-\left(1-\frac{1}{n}\right) a_{n-1}^{*}, hence lim_(n rarr oo)(a_(n))/(n)=0\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=0. It follows that in this case
lim_(n rarr oo)varphi_(n)(f)=(beta a-alpha a)*u=a*int_(0)^(1)f\lim _{n \rightarrow \infty} \varphi_{n}(f)=(\beta a-\alpha a) \cdot u=a \cdot \int_{0}^{1} f
We consider now the general case f inR(I,F)f \in \mathcal{R}(I, F). The sequence ((|a_(1)|+dots+|a_(n)|)/(n))_(n inN)\left(\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}\right)_{n \in \mathbb{N}} being bounded, let us choose MM such that (|a_(1)|+dots+|a_(n)|)/(n) <= M\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n} \leq M for each n inNn \in \mathbb{N}; let also epsi > 0\varepsilon>0 be an arbitrary constant. From the definition of the space R(I,F)\mathcal{R}(I, F) it follows the existence of the functions f_(i),i=1,dots,pf_{i}, i=1, \ldots, p of the type described in (5), with ||f-sum_(i=1)^(p)f_(i)|| < epsi\left\|f-\sum_{i=1}^{p} f_{i}\right\|<\varepsilon. We have
The norm of varphi_(n)\varphi_{n}, as given by (2), is ||varphi_(n)||=(|a_(1)|+dots+|a_(n)|)/(n)\left\|\varphi_{n}\right\|=\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}, hence
Taking into account the first part of the proof, for each i=1,dots,pi=1, \ldots, p there exists n_(i)inNn_{i} \in \mathbb{N} so that ||varphi_(n)(f_(i))-a*int_(0)^(1)f_(i)|| < (epsi )/(p)\left\|\varphi_{n}\left(f_{i}\right)-a \cdot \int_{0}^{1} f_{i}\right\|<\frac{\varepsilon}{p} for n >= n_(i)n \geq n_{i}. It follows that for n >= max_(i=1,dots,p)n_(i)n \geq \max _{i=1, \ldots, p} n_{i} we have
||varphi_(n)(f)-a*int_(0)^(1)f|| <= M*epsi+epsi+|a|*epsi," for "n >= N.\left\|\varphi_{n}(f)-a \cdot \int_{0}^{1} f\right\| \leq M \cdot \varepsilon+\varepsilon+|a| \cdot \varepsilon, \text { for } n \geq \mathbb{N} .
It follows that the conclusion holds also for the general case f inF(I,F)f \in \mathcal{F}(I, F).
Remark 1. The Cesàro-convergence of (a_(n))_(n inN)\left(a_{n}\right)_{n \in \mathbb{N}} in Theorem 2 does not necessarily imply the boundedness of ((|a_(1)|+dots+|a_(n)|)/(n))_(n inN)\left(\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}\right)_{n \in \mathbb{N}}. For example, let the sequence be given by
a_(n)={[sqrtn",",n" odd "],[-sqrt(n-1)",",n" even "]:}a_{n}= \begin{cases}\sqrt{n}, & n \text { odd } \\ -\sqrt{n-1}, & n \text { even }\end{cases}
Then
a_(n)^(**)={[1//sqrtn",",n" odd "],[0",",n" even "","]:}a_{n}^{*}= \begin{cases}1 / \sqrt{n}, & n \text { odd } \\ 0, & n \text { even },\end{cases}
hence lim_(n rarr oo)a_(n)^(**)=0\lim _{n \rightarrow \infty} a_{n}^{*}=0, but lim_(n rarr oo)(|a_(1)|+dots+|a_(n)|)/(n)=lim_(n rarr oo)|a_(n)|=oo\lim _{n \rightarrow \infty} \frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}=\lim _{n \rightarrow \infty}\left|a_{n}\right|=\infty.
The condition of Cesàro-convergence imposed to the sequence (a_(n))_(n inN)\left(a_{n}\right)_{n \in \mathbb{N}} in Theorem 22 is a natural one and cannot be relaxed, neither the boundedness of the sequence ((|a_(1)|+dots+|a_(n)|)/(n))_(n inN)\left(\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}\right)_{n \in \mathbb{N}}. In fact, Theorem 2 does admit the following converse:
Theorem 3. Let (varphi_(n))_(n inN)\left(\varphi_{n}\right)_{n \in \mathbb{N}} be the sequence (1) of linear operators associated to the sequence of real numbers (a_(n))_(n inN)\left(a_{n}\right)_{n \in \mathbb{N}}. If lim_(n rarr oo)varphi_(n)(f)\lim _{n \rightarrow \infty} \varphi_{n}(f) exists for every f inC(I,F)subeR(I,F)f \in \mathcal{C}(I, F) \subseteq \mathcal{R}(I, F), then:
(a_(n))_(n inN)\left(a_{n}\right)_{n \in \mathbb{N}} is Cesàro-convergent to a (lim_(n rarr oo)(a_(1)+dots+a_(n))/(n)=a)\left(\lim _{n \rightarrow \infty} \frac{a_{1}+\ldots+a_{n}}{n}=a\right);
the sequence ((|a_(1)|+dots+|a_(n)|)/(n))_(n inN)\left(\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}\right)_{n \in \mathbb{N}} is bounded.
Proof. The first conclusion follows by taking f(t)=uf(t)=u for each t in It \in I, with u in F\\{0}u \in F \backslash\{0\}. In this case varphi_(n)(f)=(a_(1)+dots+a_(n))/(n)u\varphi_{n}(f)=\frac{a_{1}+\ldots+a_{n}}{n} u.
The norm of the operators varphi_(n)\varphi_{n} in the space C(I,F)\mathcal{C}(I, F) is the same as in (1). Indeed, in the proof of Proposition 1, the function f_(0)f_{0} can be modified to a continuous and piecewise affine one which takes also the values (signa_(k))u\left(\operatorname{sign} a_{k}\right) u on the points (k)/(n),k=1,dots,n\frac{k}{n}, k=1, \ldots, n. From the principle of uniform boundedness [4, p. 66] the second conclusion follows.
Remark 2. Using a principle of condensation of singularities [2, one can prove that the convergence in (4) does not hold for "typical" continuous functions. Even stronger principles of condensation of singularities [1] may be applied.
In what follows we shall prove that for the class of continuous functions having also a continuous derivative, the condition of boundedness of the sequence ((|a_(1)|+dots+|a_(n)|)/(n))_(n inN)\left(\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}\right)_{n \in \mathbb{N}} is no longer necessary. In this setting, the principle of uniform boundedness does not work, because C^(1)(I,F)\mathcal{C}^{1}(I, F) endowed with the uniform norm is not a Banach space. The norm of varphi_(n)\varphi_{n} is still the same. In this case we have
Theorem 4. Let there be given a function f inC^(1)(I,F)f \in \mathcal{C}^{1}(I, F) and a sequence (a_(n))_(n inN)\left(a_{n}\right)_{n \in \mathbb{N}} of real numbers which is Cesàro-convergent to a ( lim_(n rarr oo)(a_(1)+dots+a_(n))/(n)=a\lim _{n \rightarrow \infty} \frac{a_{1}+\ldots+a_{n}}{n}=a ). Then
Applying Theorem 2 for the function gg and for the sequence (a_(n)^(**))_(n inN)\left(a_{n}^{*}\right)_{n \in \mathbb{N}} convergent to aa, for which obviously lim_(n rarr oo)(a_(1)^(**)+dots+a_(n)^(**))/(n)=a\lim _{n \rightarrow \infty} \frac{a_{1}^{*}+\ldots+a_{n}^{*}}{n}=a and ((|a_(1)^(**)|+dots+|a_(n)^(**)|)/(n))_(n inN)\left(\frac{\left|a_{1}^{*}\right|+\ldots+\left|a_{n}^{*}\right|}{n}\right)_{n \in \mathbb{N}} is bounded (because of the convergence of (a_(n)^(**))_(n inN)\left(a_{n}^{*}\right)_{n \in \mathbb{N}} ) we get
(the last equality is a consequence of an integration by parts). The function f^(')f^{\prime} being uniformly continuous on II, given epsi > 0\varepsilon>0 and nn sufficiently large, we
obtain as a consequence of a mean theorem [3, p. 154]
We take the limit in (10) and get the conclusion.
As an application of Theorem 2 we obtain a somehow surprising result, proved directly for differentiable functions with bounded derivative in [5]: For each a in[0,1]a \in[0,1], there exist epsi_(n)in{0,1}\varepsilon_{n} \in\{0,1\} such that
lim_(n rarr oo)(1)/(n)sum_(k=1)^(n)epsi_(k)f((k)/(n))=a*int_(0)^(1)f,quad AA f inR(I,F)\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \varepsilon_{k} f\left(\frac{k}{n}\right)=a \cdot \int_{0}^{1} f, \quad \forall f \in \mathcal{R}(I, F)
To prove this equality, we choose epsi_(n)=a_(n)=|__(n+1)a __|-|__ na __|,n inN\varepsilon_{n}=a_{n}=\lfloor(n+1) a\rfloor-\lfloor n a\rfloor, n \in \mathbb{N} which satisfy epsi_(n)in{0,1}\varepsilon_{n} \in\{0,1\} and lim_(n rarr oo)(a_(1)+dots+a_(n))/(n)=a\lim _{n \rightarrow \infty} \frac{a_{1}+\ldots+a_{n}}{n}=a.
Open question. It would be interesting to find out if the conclusion of Theorem 2 also holds for a class of functions more general than the regular ones as, for example, the Riemann integrable real-valued functions. For the class of Lebesgue integrable functions the result does not hold, as the function of Dirichlet type f:I rarr F=Rf: I \rightarrow F=\mathbb{R},
[1] Anisiu, V., A principle of double condensation of singularities using sigma\sigma-porosity, "BabeşBolyai" Univ., Fac. of Math., Research Seminaries, Seminar on Math. Analysis, Preprint Nr. 7, pp. 85-88, 1985.
[2] Cobzaş, S. and Muntean, I., Condensation of singularities and divergence results in approximation theory, J. Approx. Theory, 31, pp. 148-153, 1981.
[3] Dieudonné, J., Fondements de l'analyse moderne, Paris, Gauthier-Villars, 1963.
[4] Dunford, N. and Schwartz, J. T., Linear Operators. Part 1: General Theory, John Wiley & Sons, New York, 1988.
[5] Trif, T., On a problem from the Mathematical Contest, County Stage, Gazeta Matematică CVI (11), pp. 394-396, 2001 (in Romanian).
*"T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 3400 Cluj-Napoca, Romania (mira@ictp.acad.ro).
†"Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, st. Kogălniceanu 1, 3400 Cluj-Napoca, Romania, e-mail: anisiu@math.ubbcluj.ro.