On the Approximation of Functions and the Solutions of an Equation by Quadratic Interpolation

Abstract

English translation of the title

On the Approximation of Functions and the Solutions of an Equation by Quadratic Interpolation

Authors

Tiberiu Popoviciu
Institutul de Calcul

Keywords

?

Paper coordinates

T. Popoviciu, Über die Approximation der Funktionen und der Lösungen einer Gleichung durch quadratische Interpolation, Numerische Methoden der Approximationstheorie, Band 1 (Tagung, Math. Forschungsinst., Oberwolfach, 1971), pp. 155-163. Internat. Schriftenreihe Numer. Math., Band 16, Birkhäuser, Basel, 1972 (in German)

PDF

About this paper

Journal

Numerische Methoden der Approximationstheorie

Publisher Name

published by Birkhäuser, Basel

DOI

https://doi.org/10.1007/978-3-0348-5952-3_14

Print ISSN

 

Online ISSN

 

Paper (preprint) in HTML form

1972 a -Popoviciu- Numer. Meth. Approximation theory - On the approximation of functions
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ON THE APPROXIMATION OF FUNCTIONS AND SOLUTIONS OF AN EQUATION BY QUADRATICAL INTERPOLATION by Tiberiu Popoviciu in Cluj

  1. In the following, f = f ( x ) f = f ( x ) f=f(x)f=f(x)f=f(x)always a real-valued function that is on an interval I I IIIwhose length is nonzero. We will specify the conditions that this function satisfies in the course of the discussion.
Furthermore, [ x 1 , x 2 , , x n + 1 ; f ] x 1 , x 2 , , x n + 1 ; f [x_(1),x_(2),dots,x_(n+1);f]\left[x_{1}, x_{2}, \ldots, x_{n+1} ; f\right][x1,x2,,xn+1;f]the divided difference ( n n nnn-th order) and L ( x 1 , x 2 , , x n + 1 ; f x ) L x 1 , x 2 , , x n + 1 ; f x L(x_(1),x_(2),dots,x_(n+1);f∣x)L\left(x_{1}, x_{2}, \ldots, x_{n+1} ; f \mid x\right)L(x1,x2,,xn+1;fx)the interpolation polynomial of LagrangeHermite of the function f f fffregarding the nodes x 1 , x 2 , , x n + 1 x 1 , x 2 , , x n + 1 x_(1),x_(2),dots,x_(n+1)x_{1}, x_{2}, \ldots, x_{n+1}x1,x2,,xn+1. These nodes may or may not be different from each other. In the latter case, derivatives of the function at the nodes appear in the divided difference and in the interpolation polynomial.
2. We now assume that the function f f fffsatisfies the following two conditions:
I. the equation
(1)
f ( x ) = 0 f ( x ) = 0 f(x)=0f(x)=0f(x)=0
has at least one solution in the interior of the interval I.
II. f f fffis a convex or concave function of 0th, 1st and 2nd order.
A function is called convex, non-concave, non-convex or concave of n n nnn-th order ( n 1 n 1 n >= -1n \geq-1n1) if their divided difference ( n + 1 n + 1 n+1n+1n+1) -th order for each system of n + 2 n + 2 n+2n+2n+2different points of the domain of definition is positive, non-negative, non-positive or negative. In all these cases
, the divided difference for any system of n + 2 n + 2 n+2n+2n+2Points that do not all coincide have the same property, provided that this divided difference exists.
It can be shown that a function f f fff, which satisfies conditions I and II, is continuous and in the interior of the interval I I IIIis continuously differentiable, and that equation (1) has exactly one solution z z zzzhas.
Applies to two interior points a , b a , b awayawaya,bof the interval I I IIIthe inequality a < z < b a < z < b a < z < ba<z<ba<z<b, we call a a aaaas lower and b b bbbas an upper approximation of z z zzz. As is well known, using the Regula falsi and the method of RaphsonNewton, one can then obtain better approximations of z z zzzAnother way to obtain better approximations is given below. OBdA one can assume that the function f f fffincreasing and convex in the usual sense, according to our terminology convex function O O OOO-th and 1 -th order. Denote z , z z , z z^('),z^('')z^{\prime}, z^{\prime \prime}z,zthe (only) zeros of the polynomials L ( a , b ; f x ) L ( a , b ; f x ) L(a,b;f∣x)L(a, b ; f \mid x)L(a,b;fx), L ( b , b ; f x ) L ( b , b ; f x ) L(b,b;f∣x)L(b, b ; f \mid x)L(b,b;fx), then a < z < z < z < b a < z < z < z < b a < z^(') < z < z^('') < ba<z^{\prime}<z<z^{\prime \prime}<ba<z<z<z<b.
3. Further approximations for the solution z z zzzare also those in the open interval ] a , b [ ] a , b ]a,b[:}] a, b\left[\right.]a,b[located (single) zeros z 1 , z 1 z 1 , z 1 z_(1)^('),z_(1)^('')z_{1}^{\prime}, z_{1}^{\prime \prime}z1,z1of the polynomials L ( a , a , b ; f x ) L ( a , a , b ; f x ) L(a,a,b;f∣x)L(a, a, b ; f \mid x)L(a,a,b;fx), L ( a , b , b ; f x ) L ( a , b , b ; f x ) L(a,b,b;f∣x)L(a, b, b ; f \mid x)L(a,b,b;fx). Indeed, considering the equations
f ( x ) L ( a , a , b ; f x ) = ( x a ) 2 ( x b ) [ a , a , b , x ; f ] f ( x ) L ( a , b , b ; f x ) = ( x a ) ( x b ) 2 [ a , b , b , x ; f ] f ( x ) L ( a , a , b ; f x ) = ( x a ) 2 ( x b ) [ a , a , b , x ; f ] f ( x ) L ( a , b , b ; f x ) = ( x a ) ( x b ) 2 [ a , b , b , x ; f ] {:[f(x)-L(a","a","b;f∣x)=(x-a)^(2)(x-b)[a","a","b","x;f]],[f(x)-L(a","b","b;f∣x)=(x-a)(x-b)^(2)[a","b","b","x;f]]:}\begin{aligned} & f(x)-L(a, a, b ; f \mid x)=(x-a)^{2}(x-b)[a, a, b, x ; f] \\ & f(x)-L(a, b, b ; f \mid x)=(x-a)(x-b)^{2}[a, b, b, x ; f] \end{aligned}f(x)L(a,a,b;fx)=(xa)2(xb)[a,a,b,x;f]f(x)L(a,b,b;fx)=(xa)(xb)2[a,b,b,x;f]
This gives a < x < b a < x < b a < x < ba<x<ba<x<bthe relationship
(2) L ( a , b , b ; f x ) < f ( x ) < L ( a , a , b ; f x ) , (2) L ( a , b , b ; f x ) < f ( x ) < L ( a , a , b ; f x ) , {:(2)L(a","b","b;f∣x) < f(x) < L(a","a","b;f∣x)",":}\begin{equation*} L(a, b, b ; f \mid x)<f(x)<L(a, a, b ; f \mid x), \tag{2} \end{equation*}(2)L(a,b,b;fx)<f(x)<L(a,a,b;fx),
in the case of a convex function of 2nd order, or the relationship
(3) L ( a , b , b ; f x ) > f ( x ) > L ( a , a , b ; f x ) , (3) L ( a , b , b ; f x ) > f ( x ) > L ( a , a , b ; f x ) , {:(3)L(a","b","b;f∣x) > f(x) > L(a","a","b;f∣x)",":}\begin{equation*} L(a, b, b ; f \mid x)>f(x)>L(a, a, b ; f \mid x), \tag{3} \end{equation*}(3)L(a,b,b;fx)>f(x)>L(a,a,b;fx),
in the case of a concave function of the second order. This then leads to z 1 < z < z 1 z 1 < z < z 1 z_(1)^(') < z < z_(1)^('')z_{1}^{\prime}<z<z_{1}^{\prime \prime}z1<z<z1, if f f fffconvex, or z 1 < z < z 1 z 1 < z < z 1 z_(1)^('') < z < z_(1)^(')z_{1}^{\prime \prime}<z<z_{1}^{\prime}z1<z<z1, if f f fffconcave of order 2.
4. It is of course important to use the obtained approximate values z , z z , z z^('),z^('')z^{\prime}, z^{\prime \prime}z,zand z 1 , z 1 z 1 , z 1 z_(1)^('),z_(1)^('')z_{1}^{\prime}, z_{1}^{\prime \prime}z1,z1to compare. For this purpose, we distinguish two cases.
Is f f f^(')f^{\prime}fa convex function of 2nd order, then for a < x < b a < x < b a < x < ba<x<ba<x<bfrom (2) and from
L ( a , a , b ; f x ) L ( a , b ; f x ) = ( x a ) ( x b ) [ a , a , b ; f ] L ( a , b , b ; f x ) L ( b , b ; f x ) = ( x b ) 2 [ a , b , b ; f ] L ( a , a , b ; f x ) L ( a , b ; f x ) = ( x a ) ( x b ) [ a , a , b ; f ] L ( a , b , b ; f x ) L ( b , b ; f x ) = ( x b ) 2 [ a , b , b ; f ] {:[L(a","a","b;f∣x)-L(a","b;f∣x)=(x-a)(x-b)[a","a","b;f]],[L(a","b","b;f∣x)-L(b","b;f∣x)=(x-b)^(2)[a","b","b;f]]:}\begin{aligned} & L(a, a, b ; f \mid x)-L(a, b ; f \mid x)=(x-a)(x-b)[a, a, b ; f] \\ & L(a, b, b ; f \mid x)-L(b, b ; f \mid x)=(x-b)^{2}[a, b, b ; f] \end{aligned}L(a,a,b;fx)L(a,b;fx)=(xa)(xb)[a,a,b;f]L(a,b,b;fx)L(b,b;fx)=(xb)2[a,b,b;f]
the inequalities
L ( a , a , b ; f x ) < L ( a , b ; f x ) , L ( b , b ; f x ) < L ( a , b , b ; f x ) . L ( a , a , b ; f x ) < L ( a , b ; f x ) , L ( b , b ; f x ) < L ( a , b , b ; f x ) . L(a,a,b;f∣x) < L(a,b;f∣x),quad L(b,b;f∣x) < L(a,b,b;f∣x).L(a, a, b ; f \mid x)<L(a, b ; f \mid x), \quad L(b, b ; f \mid x)<L(a, b, b ; f \mid x) .L(a,a,b;fx)<L(a,b;fx),L(b,b;fx)<L(a,b,b;fx).
So there is z < z 1 < z < z 1 < z z < z 1 < z < z 1 < z z^(') < z_(1)^(') < z < z_(1)^('') < z^('')z^{\prime}<z_{1}^{\prime}<z<z_{1}^{\prime \prime}<z^{\prime \prime}z<z1<z<z1<z, i.e. z 1 z 1 z_(1)^(')z_{1}^{\prime}z1, z 1 z 1 z_(1)^('')z_{1}^{\prime \prime}z1are better approximations than z , z z , z z^('),z^('')z^{\prime}, z^{\prime \prime}z,z.
Is f f fffa concave function of 2nd order, then from (3) and from
L ( a , b , b ; f x ) L ( a , b ; f x ) = ( x a ) ( x b ) [ a , b , b ; f ] L ( a , b , b ; f x ) L ( a , b ; f x ) = ( x a ) ( x b ) [ a , b , b ; f ] L(a,b,b;f∣x)-L(a,b;f∣x)=(x-a)(x-b)[a,b,b;f]L(a, b, b ; f \mid x)-L(a, b ; f \mid x)=(x-a)(x-b)[a, b, b ; f]L(a,b,b;fx)L(a,b;fx)=(xa)(xb)[a,b,b;f]
the relationship z < z 1 n < z . z 1 n z < z 1 n < z . z 1 n z^(') < z_(1)^(n) < z.quadz_(1)^(n)z^{\prime}<z_{1}^{n}<z . \quad z_{1}^{n}z<z1n<z.z1nis therefore a better lower approximation for z z zzzas z z z^(')z^{\prime}z5.
What are the approximate values z 1 z 1 z_(1)^(')z_{1}^{\prime}z1and z z z^('')z^{\prime \prime}zfrom z z zzzAs far as the equations are concerned, they cannot generally be compared in the case of a concave function of the second order. This is shown by the following considerations. From the equations
(4) L ( a , a , b ; f x ) L ( b , b ; f x ) = = ( x b ) { ( x a ) [ a , a , b ; f ] ( b a ) [ a , b , b ; f ] } = = ( x b ) { ( x b ) [ a , a , b ; f ] ( b a ) 2 [ a , a , b , b ; f ] } (4) L ( a , a , b ; f x ) L ( b , b ; f x ) = = ( x b ) { ( x a ) [ a , a , b ; f ] ( b a ) [ a , b , b ; f ] } = = ( x b ) ( x b ) [ a , a , b ; f ] ( b a ) 2 [ a , a , b , b ; f ] {:[(4)L(a","a","b;f∣x)-L(b","b;f∣x)=],[=(x-b){(x-a)[a","a","b;f]-(b-a)[a","b","b;f]}=],[=(x-b){(x-b)[a,a,b;f]-(b-a)^(2)[a,a,b,b;f]}]:}\begin{align*} L(a, a, b ; f \mid x) & -L(b, b ; f \mid x)= \tag{4}\\ & =(x-b)\{(x-a)[a, a, b ; f]-(b-a)[a, b, b ; f]\}= \\ & =(x-b)\left\{(x-b)[a, a, b ; f]-(b-a)^{2}[a, a, b, b ; f]\right\} \end{align*}(4)L(a,a,b;fx)L(b,b;fx)==(xb){(xa)[a,a,b;f](ba)[a,b,b;f]}==(xb){(xb)[a,a,b;f](ba)2[a,a,b,b;f]}
It follows that the difference L ( a , a , b ; f x ) L ( b , b ; f x ) L ( a , a , b ; f x ) L ( b , b ; f x ) L(a,a,b;f∣x)-L(b,b;f∣x)quadL(a, a, b ; f \mid x)-L(b, b ; f \mid x) \quadL(a,a,b;fx)L(b,b;fx)in a neighborhood of the point a a aaa(right of a a aaa) positive and in a neighborhood of the point b b bbb(left of b ) b ) b)b)b)is negative. Therefore, the polynomial (4) has exactly one zero ξ ξ xi\xiξin the interval ] a , b [ ] a , b [ ]a,b[] a, b[]a,b[. If you set m = L ( b , b ; f ξ ) m = L ( b , b ; f ξ ) m=L(b,b;f∣xi)m=L(b, b ; f \mid \xi)m=L(b,b;fξ), then f ( a ) < m < f ( b ) f ( a ) < m < f ( b ) f(a) < m < f(b)f(a)<m<f(b)f(a)<m<f(b). If you now choose a constant k k kkk, so that f ( a ) < k < f ( b ) f ( a ) < k < f ( b ) f(a) < k < f(b)f(a)<k<f(b)f(a)<k<f(b)holds, then one immediately notices that the function φ ( x ) = f ( x ) k φ ( x ) = f ( x ) k varphi(x)=f(x)-k\varphi(x)=f(x)-kφ(x)=f(x)ksatisfies the same conditions I and II as the function f f fff. Furthermore,
L ( a , a , b ; φ x ) L ( b , b ; φ x ) = L ( a , a , b ; f x ) L ( b , b ; f x ) L ( a , a , b ; φ x ) L ( b , b ; φ x ) = L ( a , a , b ; f x ) L ( b , b ; f x ) L(a,a,b;varphi∣x)-L(b,b;varphi∣x)=L(a,a,b;f∣x)-L(b,b;f∣x)L(a, a, b ; \varphi \mid x)-L(b, b ; \varphi \mid x)=L(a, a, b ; f \mid x)-L(b, b ; f \mid x)L(a,a,b;φx)L(b,b;φx)=L(a,a,b;fx)L(b,b;fx)
and the function φ φ varphi\varphiφcorresponding values z 1 , z z 1 , z z_(1)^('),z^('')z_{1}^{\prime}, z^{\prime \prime}z1,zare both left of ξ ξ xi\xiξ, if
(5) f ( a ) < k < m (5) f ( a ) < k < m {:(5)f(a) < k < m:}\begin{equation*} f(a)<k<m \tag{5} \end{equation*}(5)f(a)<k<m
is, or both to the right of ξ ξ xi\xiξ, if
(6) m < k < f ( b ) (6) m < k < f ( b ) {:(6)m < k < f(b):}\begin{equation*} m<k<f(b) \tag{6} \end{equation*}(6)m<k<f(b)
If we now consider the sign of the difference (4), it follows that for the function φ φ varphi\varphiφthe relationship z < z 1 < z z < z 1 < z z < z_(1)^(') < z^('')z<z_{1}^{\prime}<z^{\prime \prime}z<z1<zapplies if k k kkksatisfies condition (5) and z < z < z 1 z < z < z 1 z < z^('') < z_(1)^(')z<z^{\prime \prime}<z_{1}^{\prime}z<z<z1, if k k kkkthe condition (6) is satisfied. In the case k = m k = m k=mk=mk=mis z 1 = z z 1 = z z_(1)^(')=z^('')z_{1}^{\prime}=z^{\prime \prime}z1=zfor the function φ φ varphi\varphiφ6.
If conditions I and II are met, the polynomial L ( a , a , b ; f x ) + L ( a , b , b ; f x ) L ( a , a , b ; f x ) + L ( a , b , b ; f x ) L(a,a,b;f∣x)+L(a,b,b;f∣x)quadL(a, a, b ; f \mid x)+L(a, b, b ; f \mid x) \quadL(a,a,b;fx)+L(a,b,b;fx)also a single zero z 1 z 1 z_(1)z_{1}z1in the interval ] a , b a , b a,ba, ba,b[. The number z 1 z 1 z_(1)z_{1}z1is located strictly between z 1 , z 1 z 1 , z 1 z_(1)^('),z_(1)^('')z_{1}^{\prime}, z_{1}^{\prime \prime}z1,z1and is therefore a better approximation of z z zzzas the worst of the values z 1 , z 1 z 1 , z 1 z_(1)^('),z_(1)^('')z_{1}^{\prime}, z_{1}^{\prime \prime}z1,z1. If one considers that
2 f ( x ) L ( a , a , b ; f x ) L ( a , b , b ; f x ) = = ( x a ) ( x b ) { ( x a ) [ a , a , b , x ; f ] + ( x b ) [ a , b , b , x ; f ] } 2 f ( x ) L ( a , a , b ; f x ) L ( a , b , b ; f x ) = = ( x a ) ( x b ) { ( x a ) [ a , a , b , x ; f ] + ( x b ) [ a , b , b , x ; f ] } {:[2f(x)-L(a","a","b;f∣x)-L(a","b","b;f∣x)=],[=(x-a)(x-b){(x-a)[a","a","b","x;f]+(x-b)[a","b","b","x;f]}]:}\begin{aligned} 2 f(x) & -L(a, a, b ; f \mid x)-L(a, b, b ; f \mid x)= \\ & =(x-a)(x-b)\{(x-a)[a, a, b, x ; f]+(x-b)[a, b, b, x ; f]\} \end{aligned}2f(x)L(a,a,b;fx)L(a,b,b;fx)==(xa)(xb){(xa)[a,a,b,x;f]+(xb)[a,b,b,x;f]}
, as well as the properties of the convex functions of 2nd order, it follows that the left side has exactly one zero η η eta\etanin the interval ] a , b [ ] a , b [ ]a,b[] a, b[]a,b[If you now choose a constant k k kkk, so that f ( a ) < k < f ( b ) f ( a ) < k < f ( b ) f(a) < k < f(b)f(a)<k<f(b)f(a)<k<f(b)holds, then the function φ ( x ) = f ( x ) k φ ( x ) = f ( x ) k varphi(x)=f(x)-k\varphi(x)=f(x)-kφ(x)=f(x)kthe same conditions I and II as the function f f fff. Is k n = f ( η ) k n = f ( η ) k!=n=f(eta)k \neq n=f(\eta)kn=f(n), the function φ φ varphi\varphiφcorresponding points z , z 1 z , z 1 z,z_(1)z, z_{1}z,z1both left or both right of η η eta\etan. Furthermore, f ( a ) < n < f ( b ) f ( a ) < n < f ( b ) f(a) < n < f(b)f(a)<n<f(b)f(a)<n<f(b). If we assume that f f fffis a convex function of 2nd order, then the function φ φ varphi\varphiφ,
n < k < f ( b ) z 1 < z , f ( a ) < k < n z < z 1 . n < k < f ( b ) z 1 < z , f ( a ) < k < n z < z 1 . {:[n < k < f(b)Longrightarrowz_(1) < z","],[f(a) < k < n Longrightarrow z < z_(1).]:}\begin{aligned} & n<k<f(b) \Longrightarrow z_{1}<z, \\ & f(a)<k<n \Longrightarrow z<z_{1} . \end{aligned}n<k<f(b)z1<z,f(a)<k<nz<z1.
In the case of a concave function of the second order, the symbol < must be replaced by > on the right-hand side of these two formulas.
7. Similar considerations can be made if one assumes that the function f f ffffalling and concave, falling and convex, or rising and concave of the first order. These cases can be reduced to the case under study
by applying the obtained results to the functions f ( x ) , f ( a + b 2 x ) f ( x ) , f a + b 2 x -f(x),f((a+b)/(2)-x)-f(x), f\left(\frac{a+b}{2}-x\right)f(x),f(a+b2x), or f ( a + b 2 x ) f a + b 2 x -f((a+b)/(2)-x)-f\left(\frac{a+b}{2}-x\right)f(a+b2x)applies.
Condition II can be weakened. Instead of the requirement that f f fffconvex from o , 1 o , 1 o-,1-o-, 1-O,1, and 2 -th order, one can assume that f f fffnon-concave or non-convex of o , 1 o , 1 o-,1o-, 1O,1- and 2 -th order. Some or all of the z , z , z , z 1 , z 1 , z 1 z , z , z , z 1 , z 1 , z 1 z,z^('),z^(''),z_(1)^('),z_(1)^(''),z_(1)z, z^{\prime}, z^{\prime \prime}, z_{1}^{\prime}, z_{1}^{\prime \prime}, z_{1}z,z,z,z1,z1,z1Proven inequalities can then be transformed into equations.
Regarding condition II, it can be noted that a function f f fffwith positive, non-negative, non-positive or negative ( n + 1 n + 1 n+1n+1n+1)-th derivative convex, non-concave, non-convex or concave of n n nnn-th order. On the other hand, each I I IIIconvex, non-concave, non-convex or concave function n n nnn-th order ( n > 1 n > 1 n > 1n>1n>1) inside the interval I I III(n-1) times (continuously) differentiable.
Numerical example: Given the function f ( x ) = x 3 x 1 f ( x ) = x 3 x 1 f(x)=x^(3)-x-1f(x)=x^{3}-x-1f(x)=x3x1. One can immediately see that this function is a convex function in an appropriately chosen interval containing the points 1 and 2 o o o-o-O, 1st and 2nd order. Because f ( 1 ) f ( 2 ) < 0 f ( 1 ) f ( 2 ) < 0 f(1)f(2) < 0f(1) f(2)<0f(1)f(2)<0has the equation (1) between the points 1 ( = a ) 1 ( = a ) 1(=a)1(=a)1(=a)and 2 ( = b ) 2 ( = b ) 2(=b)2(=b)2(=b)a root. Applying the regula falsi and the Raphson-Newton method, one obtains the approximate values 7 6 = 1 , 1 6 ˙ , 17 11 = 1 , 5 ˙ 4 ˙ 7 6 = 1 , 1 6 ˙ , 17 11 = 1 , 5 ˙ 4 ˙ (7)/(6)=1,16^(˙),(17)/(11)=1,5^(˙)4^(˙)\frac{7}{6}=1,1 \dot{6}, \frac{17}{11}=1, \dot{5} \dot{4}76=1,16˙,1711=1,5˙4˙for this root. The polynomials L ( 1 , 1 , 2 ; f x ) L ( 1 , 1 , 2 ; f x ) L(1,1,2;f∣x)L(1,1,2 ; f \mid x)L(1,1,2;fx), L ( 1 , 2 , 2 ; f x ) L ( 1 , 2 , 2 ; f x ) L(1,2,2;f∣x)L(1,2,2 ; f \mid x)L(1,2,2;fx)are in this case 4 x 2 6 x + 1 , 5 x 2 9 x + 3 4 x 2 6 x + 1 , 5 x 2 9 x + 3 4x^(2)-6x+1,5x^(2)-9x+34 x^{2}-6 x+1,5 x^{2}-9 x+34x26x+1,5x29x+3and provide the approximate values 3 + 5 4 > 1 , 3 , 9 + 21 10 < 1 , 36 3 + 5 4 > 1 , 3 , 9 + 21 10 < 1 , 36 (3+sqrt5)/(4) > 1,3,(9+sqrt21)/(10) < 1,36\frac{3+\sqrt{5}}{4}>1,3, \frac{9+\sqrt{21}}{10}<1,363+54>1,3,9+2110<1,36.
Accordingly , 1 , 3 1 , 3 1,3dots1,3 \ldots1,3the value of the positive root of the equation x 3 x 1 = 0 x 3 x 1 = 0 x^(3)-x-1=0x^{3}-x-1=0x3x1=0, where one decimal place is exact. The zero 4 3 = 1 , 3 ˙ 4 3 = 1 , 3 ˙ (4)/(3)=1,3^(˙)\frac{4}{3}=1, \dot{3}43=1,3˙of the polynomial L ( 1 , 1 , 2 ; f x ) + L ( 1 , 2 , 2 ; f x ) L ( 1 , 1 , 2 ; f x ) + L ( 1 , 2 , 2 ; f x ) L(1,1,2;f∣x)+L(1,2,2;f∣x)L(1,1,2 ; f \mid x)+L(1,2,2 ; f \mid x)L(1,1,2;fx)+L(1,2,2;fx), which is located between 1 and 2, leads us to the same result.
8. The relations (2) and (3) show that the polynomials L ( a , b , b ; f x ) L ( a , b , b ; f x ) L(a,b,b;f∣x)L(a, b, b ; f \mid x)L(a,b,b;fx), L ( a , a , b ; f x ) L ( a , a _ , b ; f x ) L(a,a_,b;f∣x)quadL(a, \underline{a}, b ; f \mid x) \quadL(a,a,b;fx)in the case of a convex or concave function of 2nd order the function f f fffin the interval ] a , b [ ] a , b [ ]a,b[] a, b[]a,b[from both below and above. For example, let us assume that f f fffin the interval I I IIIconvex of 2nd order, then it follows that f f fffconstantly and within I I IIIis (continuously) differentiable.
Are c , a , b , d c , a , b , d c,a,b,dc, a, b, dc,a,b,dfour inner points of I I IIIwith c a < b d c a < b d c <= a < b <= dc \leq a<b \leq dca<bd, it follows from
f ( x ) L ( c , a , b ; f x ) = ( x c ) ( x a ) ( x b ) [ c , a , b , x ; f ] f ( x ) L ( a , b , d ; f x ) = ( x a ) ( x b ) ( x d ) [ a , b , d , x ; f ] f ( x ) L ( c , a , b ; f x ) = ( x c ) ( x a ) ( x b ) [ c , a , b , x ; f ] f ( x ) L ( a , b , d ; f x ) = ( x a ) ( x b ) ( x d ) [ a , b , d , x ; f ] {:[f(x)-L(c","a","b;f∣x)=(x-c)(x-a)(x-b)[c","a","b","x;f]],[f(x)-L(a","b","d;f∣x)=(x-a)(x-b)(x-d)[a","b","d","x;f]]:}\begin{aligned} & f(x)-L(c, a, b ; f \mid x)=(x-c)(x-a)(x-b)[c, a, b, x ; f] \\ & f(x)-L(a, b, d ; f \mid x)=(x-a)(x-b)(x-d)[a, b, d, x ; f] \end{aligned}f(x)L(c,a,b;fx)=(xc)(xa)(xb)[c,a,b,x;f]f(x)L(a,b,d;fx)=(xa)(xb)(xd)[a,b,d,x;f]
for a < x < b a < x < b a < x < ba<x<ba<x<bthe relationship
L ( a , b , d ; f x ) < f ( x ) < L ( c , a , b ; f x ) , L ( a , b , d ; f x ) < f ( x ) < L ( c , a , b ; f x ) , L(a,b,d;f∣x) < f(x) < L(c,a,b;f∣x),L(a, b, d ; f \mid x)<f(x)<L(c, a, b ; f \mid x),L(a,b,d;fx)<f(x)<L(c,a,b;fx),
which generalizes the inequalities (2). ( c < a < b < d ) ( c < a < b < d ) (c < a < b < d)(c<a<b<d)(c<a<b<d)
L ( a , b , d ; f x ) L ( a , b , b ; f x ) = ( x a ) ( x b ) ( d b ) [ a , b , b , d ; f ] L ( a , a , b ; f x ) L ( c , a , b ; f x ) = ( x a ) ( x b ) ( a c ) [ c , a , a , b ; f ] L ( a , b , d ; f x ) L ( a , b , b ; f x ) = ( x a ) ( x b ) ( d b ) [ a , b , b , d ; f ] L ( a , a , b ; f x ) L ( c , a , b ; f x ) = ( x a ) ( x b ) ( a c ) [ c , a , a , b ; f ] {:[L(a","b","d;f∣x)-L(a","b","b;f∣x)=(x-a)(x-b)(d-b)[a","b","b","d;f]],[L(a","a","b;f∣x)-L(c","a","b;f∣x)=(x-a)(x-b)(a-c)[c","a","a","b;f]]:}\begin{aligned} & L(a, b, d ; f \mid x)-L(a, b, b ; f \mid x)=(x-a)(x-b)(d-b)[a, b, b, d ; f] \\ & L(a, a, b ; f \mid x)-L(c, a, b ; f \mid x)=(x-a)(x-b)(a-c)[c, a, a, b ; f] \end{aligned}L(a,b,d;fx)L(a,b,b;fx)=(xa)(xb)(db)[a,b,b,d;f]L(a,a,b;fx)L(c,a,b;fx)=(xa)(xb)(ac)[c,a,a,b;f]
It also follows that of all approximate values L ( a , b , d ; f x ) L ( a , b , d ; f x ) L(a,b,d;f∣x)L(a, b, d ; f \mid x)L(a,b,d;fx), L ( c , a , b ; f x ) L ( c , a , b ; f x ) L(c,a,b;f∣x)L(c, a, b ; f \mid x)L(c,a,b;fx)with c a < b d , L ( a , b , b ; f x ) c a < b d , L ( a , b , b ; f x ) c <= a < b <= d,quad L(a,b,b;f∣x)c \leq a<b \leq d, \quad L(a, b, b ; f \mid x)ca<bd,L(a,b,b;fx)the best lower approximation of f ( x ) f ( x ) f(x)f(x)f(x)and L ( a , a , b ; f x ) L ( a , a , b ; f x ) L(a,a,b;f∣x)L(a, a, b ; f \mid x)L(a,a,b;fx)the best upper approximation of f ( x ) f ( x ) f(x)f(x)f(x)for a < x < b a < x < b a < x < b quada<x<b \quada<x<bis.
A similar property can also be proven for concave functions of second order. Only in this case, the meaning of the inequalities is reversed.
The above considerations can be applied, for example, to the following functions: ln x ln x ln x\ln xlnxwhich is convex on the set of positive real numbers of order 2, arctg x arctg x arctg x\operatorname{arctg} xarctgx, which is based on the interval [ 1 3 , 1 3 ] 1 3 , 1 3 [-(1)/(sqrt3),(1)/(sqrt3)]\left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right][13,13]concave of 2nd order and 1 2 ln ( 1 + x 2 ) 1 2 ln 1 + x 2 (1)/(2)ln(1+x^(2))\frac{1}{2} \ln \left(1+x^{2}\right)12ln(1+x2), which is based on the interval [ 0 , 3 ] [ 0 , 3 ] [0,sqrt3][0, \sqrt{3}][0,3]is concave of order 2.
9. We assume in the following that the function on the interval I I IIIexplained function f f fffis sufficiently often differentiable so that all divided differences and interpolation polynomials that will occur exist.
To use the function represented by a table f f fffTo interpolate, we choose four values c , a , b , d c , a , b , d c,a,b,dc, a, b, dc,a,b,dthe variable with c < a < b < d c < a < b < d c < a < b < dc<a<b<dc<a<b<dand approximate the function f ( x ) f ( x ) f(x)f(x)f(x), where a < x < b a < x < b a < x < ba<x<ba<x<bis divided by the arithmetic mean
P ( c , a , b , d ; f x ) = 1 2 { L ( c , a , b ; f x ) + L ( a , b , d ; f x ) } P ( c , a , b , d ; f x ) = 1 2 { L ( c , a , b ; f x ) + L ( a , b , d ; f x ) } P(c,a,b,d;f∣x)=(1)/(2){L(c,a,b;f∣x)+L(a,b,d;f∣x)}P(c, a, b, d ; f \mid x)=\frac{1}{2}\{L(c, a, b ; f \mid x)+L(a, b, d ; f \mid x)\}P(c,a,b,d;fx)=12{L(c,a,b;fx)+L(a,b,d;fx)}
of the polynomials L ( c , a , b ; f x ) , L ( a , b , d ; f x ) . L ( c , a , b ; f x ) , L ( a , b , d ; f x ) . L(c,a,b;f∣x),quad L(a,b,d;f∣x).quadL(c, a, b ; f \mid x), \quad L(a, b, d ; f \mid x) . \quadL(c,a,b;fx),L(a,b,d;fx).The error is then equal to
(7) d ( x ) = f ( x ) P ( c , a , b , d ; f x ) = = 1 2 ( x a ) ( x b ) { ( x c ) ( c d ) [ c , a , x , b , d ; f ] + ( 2 x c d ) [ a , x , b , d ; f ] } (7) d ( x ) = f ( x ) P ( c , a , b , d ; f x ) = = 1 2 ( x a ) ( x b ) { ( x c ) ( c d ) [ c , a , x , b , d ; f ] + ( 2 x c d ) [ a , x , b , d ; f ] } {:[(7)d(x)=f(x)-P(c","a","b","d;f∣x)=],[=(1)/(2)(x-a)(x-b){(x-c)(c-d)[c","a","x","b","d;f]+(2x-c-d)[a","x","b","d;f]}]:}\begin{align*} d(x) & =f(x)-P(c, a, b, d ; f \mid x)= \tag{7}\\ & =\frac{1}{2}(x-a)(x-b)\{(x-c)(c-d)[c, a, x, b, d ; f]+(2 x-c-d)[a, x, b, d ; f]\} \end{align*}(7)d(x)=f(x)P(c,a,b,d;fx)==12(xa)(xb){(xc)(cd)[c,a,x,b,d;f]+(2xcd)[a,x,b,d;f]}
The error d 1 ( x ) d 1 ( x ) d_(1)(x)d_{1}(x)d1(x), which is used in the approximation of f ( x ) f ( x ) f(x)f(x)f(x)by the arithmetic mean of the polynomials L ( a , a , b ; f x ) , L ( a , b , b ; f x ) , L ( a , a , b ; f x ) , L ( a , b , b ; f x ) , L(a,a,b;f∣x),quad L(a,b,b;f∣x),quadL(a, a, b ; f \mid x), \quad L(a, b, b ; f \mid x), \quadL(a,a,b;fx),L(a,b,b;fx),so through P ( a , a , b , b ; f x ) P ( a , a , b , b ; f x ) P(a,a,b,b;f∣x)P(a, a, b, b ; f \mid x)P(a,a,b,b;fx), can be obtained by substituting in (7) c , d c , d c,dc, dc,dthrough a , b a , b a,ba, ba,bA simple calculation then gives
(8) d ( x ) d 1 ( x ) = 1 2 ( x a ) ( x b ) { ( x c ) ( c a ) [ c , a , a , x , b ; f ] + + ( x d ) ( d b ) [ a , x , b , b , d ; f ] + ( b a ) ( b d ) [ a , a , x , b , b ; f ] } (8) d ( x ) d 1 ( x ) = 1 2 ( x a ) ( x b ) { ( x c ) ( c a ) [ c , a , a , x , b ; f ] + + ( x d ) ( d b ) [ a , x , b , b , d ; f ] + ( b a ) ( b d ) [ a , a , x , b , b ; f ] } {:[(8)d(x)-d_(1)(x)=(1)/(2)(x-a)(x-b){(x-c)(c-a)[c","a","a","x","b;f]+],[+(x-d)(d-b)[a","x","b","b","d;f]+(b-a)(b-d)[a","a","x","b","b;f]}]:}\begin{align*} d(x)-d_{1}(x) & =\frac{1}{2}(x-a)(x-b)\{(x-c)(c-a)[c, a, a, x, b ; f]+ \tag{8}\\ & +(x-d)(d-b)[a, x, b, b, d ; f]+(b-a)(b-d)[a, a, x, b, b ; f]\} \end{align*}(8)d(x)d1(x)=12(xa)(xb){(xc)(ca)[c,a,a,x,b;f]++(xd)(db)[a,x,b,b,d;f]+(ba)(bd)[a,a,x,b,b;f]}
We now assume that the points c , a , b , d c , a , b , d c,a,b,dc, a, b, dc,a,b,dare equidistant, which is the case with most interpolation tables, and want to find the value of f f fffat the center of the interval [ a , b ] [ a , b ] [a,b][a, b][a,b]estimate, a case that also occurs very frequently. We then set x = μ = a + b 2 ( = c + d 2 ) x = μ = a + b 2 = c + d 2 x=mu=(a+b)/(2)(=(c+d)/(2))x=\mu=\frac{a+b}{2}\left(=\frac{c+d}{2}\right)x=μ=a+b2(=c+d2), and from (7), (8) follows
d ( μ ) = 9 ( b a 2 ) 4 [ c , a , μ , b , d ; f ] , d 1 ( μ ) = ( b a 2 ) 4 [ a , a , μ , b , b ; f ] (9) d ( μ ) d 1 ( μ ) = ( b a 2 ) 4 { 3 [ c , a , a , μ , b ; f ] + 3 [ a , μ , b , b , d ; f ] + 2 [ a , a , μ , b , b ; f ] } . d ( μ ) = 9 b a 2 4 [ c , a , μ , b , d ; f ] , d 1 ( μ ) = b a 2 4 [ a , a , μ , b , b ; f ] (9) d ( μ ) d 1 ( μ ) = b a 2 4 { 3 [ c , a , a , μ , b ; f ] + 3 [ a , μ , b , b , d ; f ] + 2 [ a , a , μ , b , b ; f ] } . {:[d(mu)=9((b-a)/(2))^(4)[c","a","mu","b","d;f]","quadd_(1)(mu)=((b-a)/(2))^(4)[a","a","mu","b","b;f]],[(9)d(mu)-d_(1)(mu)=((b-a)/(2))^(4){3[c","a","a","mu","b;f]+3[a","mu","b","b","d;f]+2[a","a","mu","b","b;f]}.]:}\begin{align*} & d(\mu)=9\left(\frac{b-a}{2}\right)^{4}[c, a, \mu, b, d ; f], \quad d_{1}(\mu)=\left(\frac{b-a}{2}\right)^{4}[a, a, \mu, b, b ; f] \\ & d(\mu)-d_{1}(\mu)=\left(\frac{b-a}{2}\right)^{4}\{3[c, a, a, \mu, b ; f]+3[a, \mu, b, b, d ; f]+2[a, a, \mu, b, b ; f]\} . \tag{9} \end{align*}d(μ)=9(ba2)4[c,a,μ,b,d;f],d1(μ)=(ba2)4[a,a,μ,b,b;f](9)d(μ)d1(μ)=(ba2)4{3[c,a,a,μ,b;f]+3[a,μ,b,b,d;f]+2[a,a,μ,b,b;f]}.
If we now assume that f f fffconcave or convex of 3rd order, the result is | d ( μ ) | > | d 1 ( μ ) | | d ( μ ) | > d 1 ( μ ) |d(mu)| > |d_(1)(mu)||d(\mu)|>\left|d_{1}(\mu)\right||d(μ)|>|d1(μ)|. It follows in this case that P ( a , a , b , b ; f x ) P ( a , a , b , b ; f x ) P(a,a,b,b;f∣x)P(a, a, b, b ; f \mid x)P(a,a,b,b;fx)at the center of the interval [ a , b ] [ a , b ] [a,b][a, b][a,b]a better approximation for f f fffprovides as the polynomial P ( c , a , b , d ; f x ) P ( c , a , b , d ; f x ) P(c,a,b,d;f∣x)P(c, a, b, d ; f \mid x)P(c,a,b,d;fx). By the way, f f fffapproached by both from the same side.
The above considerations can be applied, for example, to the functions already mentioned: ln x ln x ln x\ln xlnx, which is concave of order 3 on the set of positive real numbers, arctg x arctg x arctg x\operatorname{arctg} xarctgx, which is based on the interval [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1]is convex of 3rd order and 1 2 ln ( 1 + x 2 ) 1 2 ln 1 + x 2 (1)/(2)ln(1+x^(2))\frac{1}{2} \ln \left(1+x^{2}\right)12ln(1+x2), which is based on the interval [ 2 + 1 , 2 1 ] [ 2 + 1 , 2 1 ] [-sqrt2+1,sqrt2-1][-\sqrt{2}+1, \sqrt{2}-1][2+1,21]is concave of 3rd order.
In practical execution of the calculations, one needs to calculate the polynomial P ( a , a , b , b ; f x ) P ( a , a , b , b ; f x ) P(a,a,b,b;f∣x)P(a, a, b, b ; f \mid x)P(a,a,b,b;fx)except the values ​​of the function f f fff, which can be seen in the table, also the values f ( a ) , f ( b ) f ( a ) , f ( b ) f^(')(a),f^(')(b)f^{\prime}(a), f^{\prime}(b)f(a),f(b)the derivative at the points a , b a , b a,ba, ba,b. The calculation of these values ​​is usually made easier by the fact that the derivative of the function f f fffis a rational function, such as ln x ln x ln x\ln xlnx, arctg x , 1 2 ln ( 1 + x 2 ) arctg x , 1 2 ln 1 + x 2 arctg x,(1)/(2)ln(1+x^(2))\operatorname{arctg} x, \frac{1}{2} \ln \left(1+x^{2}\right)arctgx,12ln(1+x2)10.
In the following, we give estimates for the error resulting from the approximations considered previously. We will only consider one case, since the others are similar, namely the approximation of the function f f fffin the spotlight μ μ mu\muμof the interval [ a , b ] [ a , b ] [a,b][a, b][a,b]by the polynomial P ( a , a , b , b ; f x ) P ( a , a , b , b ; f x ) P(a,a,b,b;f∣x)P(a, a, b, b ; f \mid x)P(a,a,b,b;fx).
If you set
M = sup | [ x 1 , x 2 , x 3 , x 4 , x 5 ; f ] | , M = sup x 1 , x 2 , x 3 , x 4 , x 5 ; f , M=s u p|[x_(1),x_(2),x_(3),x_(4),x_(5);f]|,M=\sup \left|\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; f\right]\right|,M=sup|[x1,x2,x3,x4,x5;f]|,
where the supremum extends over all groups of 5 different points x 1 , x 2 , x 3 , x 4 , x 5 x 1 , x 2 , x 3 , x 4 , x 5 x_(1),x_(2),x_(3),x_(4),x_(5)x_{1}, x_{2}, x_{3}, x_{4}, x_{5}x1,x2,x3,x4,x5of the interval [ a , b ] [ a , b ] [a,b][a, b][a,b]then from (9) we get the estimate
| d 1 ( μ ) | ( b a 2 ) 4 M . d 1 ( μ ) b a 2 4 M . |d_(1)(mu)| <= ((b-a)/(2))^(4)M.\left|d_{1}(\mu)\right| \leq\left(\frac{b-a}{2}\right)^{4} M .|d1(μ)|(ba2)4M.
Now owns f f fffa 4th order derivative, then
M = 1 24 sup x [ a , b ] | f ( 4 ) ( x ) | M = 1 24 sup x [ a , b ] f ( 4 ) ( x ) M=(1)/(24)s u p_(x in[a,b])|f^((4))(x)|M=\frac{1}{24} \sup _{x \in[a, b]}\left|f^{(4)}(x)\right|M=124supx[a,b]|f(4)(x)|
and therefore
(10) | d 1 ( μ ) | 1 24 ( b a 2 ) 4 sup x [ a , b ] | f ( 4 ) ( x ) | . (10) d 1 ( μ ) 1 24 b a 2 4 sup x [ a , b ] f ( 4 ) ( x ) . {:(10)|d_(1)(mu)| <= (1)/(24)((b-a)/(2))^(4)s u p_(x in[a,b])|f^((4))(x)|.:}\begin{equation*} \left|d_{1}(\mu)\right| \leq \frac{1}{24}\left(\frac{b-a}{2}\right)^{4} \sup _{x \in[a, b]}\left|f^{(4)}(x)\right| . \tag{10} \end{equation*}(10)|d1(μ)|124(ba2)4supx[a,b]|f(4)(x)|.
Of course, this estimate is only of interest if f f fffis bounded.
In the case of a non-concave or non-convex function of 4th order, this estimate can be further refined. Indeed, note that
d d x [ a , a , x , b , b ; f ] = [ a , a , x , x , b , b ; f ] d d x [ a , a , x , b , b ; f ] = [ a , a , x , x , b , b ; f ] (d)/(dx)[a,a,x,b,b;f]=[a,a,x,x,b,b;f]\frac{d}{d x}[a, a, x, b, b ; f]=[a, a, x, x, b, b ; f]ddx[a,a,x,b,b;f]=[a,a,x,x,b,b;f]
it follows that the function [ a , a , x , b , b ; f ] [ a , a , x , b , b ; f ] [a,a,x,b,b;f][a, a, x, b, b ; f][a,a,x,b,b;f]is monotonic. Therefore, d 1 ( μ ) d 1 ( μ ) d_(1)(mu)d_{1}(\mu)d1(μ)in this case always between
(11) ( b a 2 ) 4 [ a , a , a , b , b ; f ] und ( b a 2 ) 4 [ a , a , b , b , b ; f ] . (11) b a 2 4 [ a , a , a , b , b ; f ]  und  b a 2 4 [ a , a , b , b , b ; f ] . {:(11)((b-a)/(2))^(4)[a","a","a","b","b;f]quad" und "quad((b-a)/(2))^(4)[a","a","b","b","b;f].:}\begin{equation*} \left(\frac{b-a}{2}\right)^{4}[a, a, a, b, b ; f] \quad \text { und } \quad\left(\frac{b-a}{2}\right)^{4}[a, a, b, b, b ; f] . \tag{11} \end{equation*}(11)(ba2)4[a,a,a,b,b;f] and (ba2)4[a,a,b,b,b;f].
Numerical example. If the values ​​of the function f ( x ) = ln x f ( x ) = ln x f(x)=ln xf(x)=\ln xf(x)=lnxfor the points 1,2,3,4, then the polynomial
P ( 2 , 2 , 3 , 3 ; f x ) = f ( 2 ) + ( x 2 ) [ f ( 3 ) f ( 2 ) ] + 1 2 ( x 2 ) ( x 3 ) [ f ( 3 ) f ( 2 ) ] P ( 2 , 2 , 3 , 3 ; f x ) = f ( 2 ) + ( x 2 ) [ f ( 3 ) f ( 2 ) ] + 1 2 ( x 2 ) ( x 3 ) f ( 3 ) f ( 2 ) P(2,2,3,3;f∣x)=f(2)+(x-2)[f(3)-f(2)]+(1)/(2)(x-2)(x-3)[f^(')(3)-f^(')(2)]P(2,2,3,3 ; f \mid x)=f(2)+(x-2)[f(3)-f(2)]+\frac{1}{2}(x-2)(x-3)\left[f^{\prime}(3)-f^{\prime}(2)\right]P(2,2,3,3;fx)=f(2)+(x2)[f(3)f(2)]+12(x2)(x3)[f(3)f(2)]
at the center of the interval [ 2,3 ] a better approximation than the polynomial
P ( 1 , 2 , 3 , 4 ; f x ) = f ( 2 ) + ( x 2 ) [ f ( 3 ) f ( 2 ) ] + 1 4 ( x 2 ) ( x 3 ) [ f ( 4 ) f ( 3 ) f ( 2 ) + f ( 1 ) ] P ( 1 , 2 , 3 , 4 ; f x ) = f ( 2 ) + ( x 2 ) [ f ( 3 ) f ( 2 ) ] + 1 4 ( x 2 ) ( x 3 ) [ f ( 4 ) f ( 3 ) f ( 2 ) + f ( 1 ) ] P(1,2,3,4;f∣x)=f(2)+(x-2)[f(3)-f(2)]+(1)/(4)(x-2)(x-3)[f(4)-f(3)-f(2)+f(1)]P(1,2,3,4 ; f \mid x)=f(2)+(x-2)[f(3)-f(2)]+\frac{1}{4}(x-2)(x-3)[f(4)-f(3)-f(2)+f(1)]P(1,2,3,4;fx)=f(2)+(x2)[f(3)f(2)]+14(x2)(x3)[f(4)f(3)f(2)+f(1)]
Indeed, in this case ( f ( x ) = ln x ) ( f ( x ) = ln x ) (f(x)=ln x)(f(x)=\ln x)(f(x)=lnx)is
P ( 2 , 2 , 3 , 3 ; f 2 , 5 ) = 1 2 ( ln 2 + ln 3 ) + 1 48 P ( 1 , 2 , 3 , 4 ; f 2 , 5 ) = 1 2 ( ln 2 + ln 3 ) + 1 16 ( ln 3 ln 2 ) . P ( 2 , 2 , 3 , 3 ; f 2 , 5 ) = 1 2 ( ln 2 + ln 3 ) + 1 48 P ( 1 , 2 , 3 , 4 ; f 2 , 5 ) = 1 2 ( ln 2 + ln 3 ) + 1 16 ( ln 3 ln 2 ) . {:[P(2","2","3","3;f∣2","5)=(1)/(2)(ln 2+ln 3)+(1)/(48)],[P(1","2","3","4;f∣2","5)=(1)/(2)(ln 2+ln 3)+(1)/(16)(ln 3-ln 2).]:}\begin{aligned} & P(2,2,3,3 ; f \mid 2,5)=\frac{1}{2}(\ln 2+\ln 3)+\frac{1}{48} \\ & P(1,2,3,4 ; f \mid 2,5)=\frac{1}{2}(\ln 2+\ln 3)+\frac{1}{16}(\ln 3-\ln 2) . \end{aligned}P(2,2,3,3;f2,5)=12(ln2+ln3)+148P(1,2,3,4;f2,5)=12(ln2+ln3)+116(ln3ln2).
According to formula (10), the amount of error in the first approximation is 1 1024 1 1024 <= (1)/(1024)\leq \frac{1}{1024}11024. However, if one considers that ln x ln x ln x\ln xlnxis concave of 3rd order and convex of 4th order, then the absolute value of the first number in (11) gives the better bound
1 16 [ 3 ( ln 3 ln 2 ) 29 24 ] < 1 1600 < 1 1024 1 16 3 ( ln 3 ln 2 ) 29 24 < 1 1600 < 1 1024 (1)/(16)[3(ln 3-ln 2)-(29)/(24)] < (1)/(1600) < (1)/(1024)\frac{1}{16}\left[3(\ln 3-\ln 2)-\frac{29}{24}\right]<\frac{1}{1600}<\frac{1}{1024}116[3(ln3ln2)2924]<11600<11024
even if one considers the rather rough estimates ln 3 < 1 , 099 ln 3 < 1 , 099 ln 3 < 1,099\ln 3<1,099ln3<1,099, ln 2 > 0 , 693 , 29 24 > 1 , 208 ln 2 > 0 , 693 , 29 24 > 1 , 208 ln 2 > 0,693,(29)/(24) > 1,208\ln 2>0,693, \frac{29}{24}>1,208ln2>0,693,2924>1,208used.
From a logarithmic table with 10 decimal places we take the values
ln 2 = 0 , 6931471806 ln 3 = 1 , 0986122887 ln 2 = 0 , 6931471806 ln 3 = 1 , 0986122887 ln 2=0,6931471806quad ln 3=1,0986122887\ln 2=0,6931471806 \quad \ln 3=1,0986122887ln2=0,6931471806ln3=1,0986122887
and then receive
ln 2 + ln 3 = 1 , 7917594693 ln 3 ln 2 = 0 , 4054651081 . ln 2 + ln 3 = 1 , 7917594693 ln 3 ln 2 = 0 , 4054651081 . {:[ln 2+ln 3=1","7917594693],[ln 3-ln 2=0","4054651081.]:}\begin{aligned} & \ln 2+\ln 3=1,7917594693 \\ & \ln 3-\ln 2=0,4054651081 . \end{aligned}ln2+ln3=1,7917594693ln3ln2=0,4054651081.
If the 11th decimal place is ignored during the calculation, the result is
P ( 2 , 2 , 3 , 3 ; f 2 , 5 ) 0 , 8958797346 + 0 , 0208333333 = 0 , 916713 o 679 P ( 1 , 2 , 3 , 4 ; f 2 , 5 ) 0 , 8958797346 + o , o 253415692 = o , 9212213 o 38 . P ( 2 , 2 , 3 , 3 ; f 2 , 5 ) 0 , 8958797346 + 0 , 0208333333 = 0 , 916713 o 679 P ( 1 , 2 , 3 , 4 ; f 2 , 5 ) 0 , 8958797346 + o , o 253415692 = o , 9212213 o 38 . {:[P(2","2","3","3;f∣2","5)~~0","8958797346+0","0208333333=0","916713 o 679],[P(1","2","3","4;f∣2","5)~~0","8958797346+o","o 253415692=o","9212213 o 38.]:}\begin{aligned} & P(2,2,3,3 ; f \mid 2,5) \approx 0,8958797346+0,0208333333=0,916713 o 679 \\ & P(1,2,3,4 ; f \mid 2,5) \approx 0,8958797346+o, o 253415692=o, 9212213 o 38 . \end{aligned}P(2,2,3,3;f2,5)0,8958797346+0,0208333333=0,916713O679P(1,2,3,4;f2,5)0,8958797346+O,O253415692=O,9212213O38.
In the same table, the value of ln 2 , 5 ln 2 , 5 ln 2,5\ln 2,5ln2,5as 0.9162907319. So 3 decimal places of our approximate value agree with the value of ln 2 , 5 ln 2 , 5 ln 2,5\ln 2,5ln2,5agree.
[/vc_column]
1972

Related Posts