Abstract
Let \(X,Y\) be two Banach spaces and \(P:X\rightarrow Y\) a nonlinear operator. For solving the equation \(P\left( x\right) =0\) we consider the following iterations: \begin{align*} x_{n+1} & =x_{n}-A_{n}P\left( x_{n}\right) ;\\ A_{n+1} & =A_{n}\left( 2E-P^{\prime}\left( x_{n-1}\right) A_{n}\right),\ \ n=0,1,…,\end{align*}\(E\) the identity operator. We obtain sufficient conditions such that the sequences \(\left( x_{n}\right)_{n\geq0}\), \(\left( A_{n}\right) _{n\geq0}\) to converge to the solution \(x^{\ast}\) of the equation \(P\left( x\right) =0\), respectively to \(P^{\prime}\left( x^{\ast}\right)^{-1}\). The above method has the advantage that if does not require the computation of \(F^{\prime}\left( x_{k}\right)\) at each iteration step, and also that it does not require the solving of a linear system at each step.
Authors
Adrian Diaconu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Title
Original title (in Romanian)
Asupra unor metode iterative pentru rezolvarea ecuaţiilor operaţionale neliniare
English translation of the title
On some iterative methods for solving nonlinear operator equations
Keywords
semilocal convergence; nonlinear operator equation; iterative method; Schultz method
Cite this paper as:
A. Diaconu, I. Păvăloiu, Asupra unor metode iterative pentru rezolvarea ecuaţiilor operaţionale neliniare, Rev. Anal. Numer. Teoria Aproximaţiei, 2 (1973) no. 1, pp. 61-69 (in Romanian).
About this paper
Publisher Name
Academia Republicii S.R.
Print ISBN
Not available yet.
Online ISBN
Not available yet.
References
[1] Collatz, I.., Näheyungsucrfahren höheyer Ordnung für Gleichungen in Banach-Rraumen. Archive for Rational Mechanics and Analysis, II (7), 66-75 (1958).
[2] Janko, B., Sur la theorie nitaire des methodes d’itération pour la resolution des equations operationnelles non lineaires. Publications of the Mathematical Institute Hungarian Academy of Sciences, II Ser. A, 301 -311 (1961).
[3] Janko, B., Rezolvarea ecuatiilor operationale neliniare in spatii Banach. Bucuresti, Editura Academiei, R.S.R’ (1969).
[4] Pavaloiu, I., Sur la méthode de Steffensen pour la résolution des équations opérationnelles non linéaires. Revue Rournaine de Mathématiques pures et Appliquées, XIII (6), 857-861 (1968).
[5] Pavaloiu, I., Interpolation dans des espaces linéaires normés et applications. Mathematica (Cluj) XII (35), 7, 149-158 (1970).
[6] Pavaloiu, I., Sur les procédés iteratifs à un ordre élevé de convergence. Mathematica, (Cluj) XII (35), 2, 309-324 (1970).
[7] Pavaloiu, I., Consideratii asupra metodelor iterative obtinute prin interpolare inversa. Studii si cercetari matematice, XXIII (10), 1545-1549 (1971).
[8] Popoviciu, T., Sur la délimtation de l,erreur dans l’approximation des racines d’une équation par interpolation lineaire ou quadratique. Revue Roumaine de matematiques pures et appliquées, XIII, 1, 75-78 (1968).
[9] Sergeev, A. S., O metode hord. Sibirski mat. jurnal, XI (2), 282-289 (1961).
[10] Traub, J. F., Itrerative methods for the solution of equations. Prentice-Hall. Inc. Englewood Cliffs N.J. (1964).
[11] Ul’m, S., Ob obobscennih razdelennîh raznostiah I Izv. Akad. Nauk. Estonski S.S.R. 16, 1,13-26 (1967).
[12] Ul’m, S., Ob obobscennîh razdelennyh, raznostjah II Izv. Akad. Nauk Estonskoi S.S.R. 18, 2, 746-155 (1967).
[13] Ul’m, S., Ob iterationnyk metodah s posledovatel’noi. approksimacii obratnovo operatora lzv. Akad.. Nauk Estonskoi S’S,R., lß, 4, 403-411 (1967).