Let \(X\) be a Banach space, \(Y\) a normed space, \(G:X\rightarrow Y\) a nonlinear operator, and \(G\left( x\right) =0\) a nonlinear equation. We denote by \(F:X^{2}\rightarrow Y\) a nonlinear operator for which the restriction to the diagonal of \(X^{2}\) coincide with \(G\). We first prove a Taylor type formula for operators with two variables. Next we consider the following two-step Newton type method: \[F\left( x_{n},x_{n-1}\right) +F_{x}^{\prime}\left( x_{n},x_{n-1}\right) \left( x_{n+1}-x_{n}\right) +F_{y}^{\prime}\left( x_{n},x_{n-1}\right) \left( x_{n}-x_{n-1}\right)=0.\] We study the convergence to the solution of the above sequence.
Authors
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Title
Original title (in French)
Une généralisation de methode de Newton
English translation of the title
A generalization of the Newton method
Keywords
Taylor polynomial with two variables; two-step Newton type method
I. Păvăloiu, Une généralisation de methode de Newton, Mathematica, 20(43) (1978) no. 1, pp. 45-52 (in French).
About this paper
Journal
Mathematica
Publisher Name
DOI
Not available yet.
Print ISSN
Not available yet.
Online ISSN
Not available yet.
References
[1] Kantorovici, L.V., Functionalnîi analiz i prikladnaia matematika, UMN, 28, 89-185 (1948).
[2] Pavaloiu, I., Sur les procédés iteratif à un ordere élevé de convergence. Mathematica, 12, (35), 2 309-324 (1970).
[3] Weinisckhe, J. H., Über eine Klasse von Iterationsverfahren. Numeriche Mathematik , 6, 395-404, (1964).
Paper (preprint) in HTML form
A-generalization-of-the-Newton-method
Original text
Rate this translation
Your feedback will be used to help improve Google Translate
A generalization of the Newton method
by
ION PAVALOIU
(Cluj-Napoca)
In this work we will study a Newton-type method for solving operational equations. For the construction of this method it is necessary to consider the generalized Taylor formula for applications of two variables.
LetXXAndYYtwo normed linear spaces. We denote byX^(2)==X xx XX^{2}= =X \times Xthe Cartesian product ofXXby itself and consider an open setU subX^(2)U \subset X^{2}. Suppose that the elements (x_(0),y_(0)x_{0}, y_{0}) And (x_(0)+h,y_(0)+kx_{0}+h, y_{0}+k) belong to the setUU, Or(h,k)inX^(2)(h, k) \in X^{2}. Eitherf:U rarr Yf: U \rightarrow Yan application defined onUUand values inYY.
THEOREM 1. If the applicationf:U rarr Yf: U \rightarrow Yadmits continuous partial derivatives, in the Fréchet sense, up to order 2 inclusive, for each element(x,y)in U(x, y) \in U, then we have the following inequality:
(1)
or byf_(x)^('),f_(y)^('),f_(x)^(''),f_(xy)^(''),f_(y)^('')f_{x}^{\prime}, f_{y}^{\prime}, f_{x}^{\prime \prime}, f_{x y}^{\prime \prime}, f_{y}^{\prime \prime}we have designated the partial derivatives of order 1 and 2 of the applicationffwith respect to the specified variables.
Demonstration. We will give a demonstration analogous to that given in work [1] for Taylor's formula relating to applications of a single variable.
We designate byyythe expression
{:(2)y=f(x_(0)+h,y_(0)+k)-f(x_(0),y_(0))-f_(x)^(')(x_(0),y_(0))h-f_(y)^(')(x_(0),y_(0))k:}\begin{equation*}
y=f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}, y_{0}\right)-f_{x}^{\prime}\left(x_{0}, y_{0}\right) h-f_{y}^{\prime}\left(x_{0}, y_{0}\right) k \tag{2}
\end{equation*}
EitherT:Y rarrRT: Y \rightarrow \mathbf{R}a linear and continuous functional defined onYYand values inR\mathbf{R}, which has the following properties:
{:[(3)||T||=1],[Ty=||y||]:}\begin{align*}
& \|T\|=1 \tag{3}\\
& T y=\|y\|
\end{align*}
(The existence of such a functional is ensured by the HahnBanach theorem).
Now we consider the functionvarphi:RxxRrarrR\varphi: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}given by the following equality:
Or0 <= theta <= 1,0 <= mu <= 10 \leqq \theta \leqq 1,0 \leqq \mu \leqq 1.
From (2), (3) and (8) the inequality of the statement of the theorem results.
In what follows we consider the following equation
(9)
G(x)=0G(x)=0
OrG:X rarr YG: X \rightarrow YAndtheta\thetais the neutral element of spaceYY
We assume thatXXis a Banach space. We denote byF:X^(2)rarr YF: X^{2} \rightarrow Yan application and we assume that the application restrictionFFon the wholeDDcoincides withGG, OrD={(x,y)inX^(2):x=y}D=\left\{(x, y) \in X^{2}: x=y\right\}.
Either(x_(n),x_(n-1))inX^(2)\left(x_{n}, x_{n-1}\right) \in X^{2}any element of spaceX^(2)X^{2}. We assume that the applicationFFadmits partial derivatives in the Fréchet sense at the point(x_(n),x_(n-1))inX^(2)\left(x_{n}, x_{n-1}\right) \in X^{2}and we consider the linear equation
(10)F(x_(n),x_(n-1))+F_(x)^(')(x_(n),x_(n-1))(x_(n+1)-x_(n))+F_(y)^(')(x_(n),x_(n-1))(x_(n)-x_(n-1))=thetaF\left(x_{n}, x_{n-1}\right)+F_{x}^{\prime}\left(x_{n}, x_{n-1}\right)\left(x_{n+1}-x_{n}\right)+F_{y}^{\prime}\left(x_{n}, x_{n-1}\right)\left(x_{n}-x_{n-1}\right)=\theta,
where the unknown element isx_(n+1)x_{n+1}.
If we assume that the applicationF_(x)^(')(x_(n),x_(n-1))in L(X,Y)F_{x}^{\prime}\left(x_{n}, x_{n-1}\right) \in L(X, Y)is reversible (byL(X,Y)L(X, Y)we denote the set of linear and continuous applications defined onXXand values inYY), then the solutionx_(n+1)x_{n+1}of equation (10) has the following representation:
(11)
Using method (11) for eachn=0,1,dotsn=0,1, \ldots, we get a sequence(x_(n))_(n=0)^(oo)\left(x_{n}\right)_{n=0}^{\infty}of approximations for the solution of equation (9).
Indeed, if the following(x_(n))_(n=0)^(oo)\left(x_{n}\right)_{n=0}^{\infty}is convergent, and ifbar(x)=limx_(n)\bar{x}=\lim x_{n}, then it is obvious thatF( bar(x), bar(x))=G( bar(x))=thetaF(\bar{x}, \bar{x})=G(\bar{x})=\theta, that is to say thatbar(x)\bar{x}verifies equation (9).
To study the convergence of the proposed method, we consider the following system of inequalities:
{:(oû̀)a >= 0","b >= 0","c >= 0","quad c >= 0","quad d >= 0","quaddelta_(0) >= 0" et "delta_(1) >= 0.:}\begin{equation*}
a \geqq 0, b \geqq 0, c \geqq 0, \quad c \geqq 0, \quad d \geqq 0, \quad \delta_{0} \geqq 0 \text { et } \delta_{1} \geqq 0 . \tag{oû̀}
\end{equation*}û
Relative to the system (12) we will demonstrate the following theorem: theorem, 2. If the elements of the sequence(delta_(n))_(n=0)^(oo)\left(\delta_{n}\right)_{n=0}^{\infty}and real numbersu,b,cu, b, cAndddmeet the following conditions:
(i)delta_(n) >= 0\delta_{n} \geqq 0for eachn=0,1n=0,1,
(ii) the elements of the sequence(delta_(n))_(n" aco ")^(oo)\left(\delta_{n}\right)_{n \text { aco }}^{\infty}verify the inequalities (12);
(iii)delta_(0)=k,d_(1)=kt_(1)\delta_{0}=k, d_{1}=k t_{1}Ork > 0k>0is a constant independent ofnn, Andt_(1)t_{1}is the positive solution of the equation
{:(13)(ak-1)t^(2)+(d+bk)t+ck=0:}\begin{equation*}
(a k-1) t^{2}+(d+b k) t+c k=0 \tag{13}
\end{equation*}
(iv) the constantsa,b,c,da, b, c, dAndkksatisfy the following inequality:
k(a+b+c)+d < 1k(a+b+c)+d<1
then:
(j) the elements of the sequence(delta_(n))_(n=0)^(oo)\left(\delta_{n}\right)_{n=0}^{\infty}satisfy the inequalitiesdelta_(n) <= kl_(1)^(n)\delta_{n} \leqq k l_{1}^{n},n=0,1,dotsn=0,1, \ldots;
(dd)lim_(n rarr oo)delta_(n)=0\lim _{n \rightarrow \infty} \delta_{n}=0;
(jjj) the seriessum_(i=0)^(oo)delta_(i)\sum_{i=0}^{\infty} \delta_{i}is convergent.
Proof. From (iv) we deduce that equation (13) has a roott_(1)t_{1},0 <= t_(1) < 10 \leqq t_{1}<1. Eithervarphi(t)=(ak-1)t^(2)+(d+bk)t+ck\varphi(t)=(a k-1) t^{2}+(d+b k) t+c k, so we havevarphi(0) >= 0\varphi(0) \geqq 0Andvarphi(1) < 0\varphi(1)<0that is to say the equation considered admits a roott_(1)t_{1}which verifies the inequality0 <= t_(1) < 10 \leqq t_{1}<1.
To demonstrate property (j) we will proceed by induction.
Forn=0n=0Andn=1n=1the inequalities of property (j) are verified by hypothesis. Suppose that property (j) holds forn=2,3,dots,sn=2,3, \ldots, sand show that it takes place forn=s+1n=s+1. Indeed, of0 <= t_(1) < 10 \leqq t_{1}<1the following inequalities result:
{:(14)delta_(i) <= kt_(1) <= k","i=2","3","dots","s.:}\begin{equation*}
\delta_{i} \leqq k t_{1} \leqq k, i=2,3, \ldots, s . \tag{14}
\end{equation*}
We will now write inequalities (12) in the following form:
From (14), taking into accountu_(n)u_{n}Andv_(n)v_{n}we deduce
u_(n) <= akt_(1)+d" et "v_(n) <= bkt_(1)+ck,n=2,3,dots,s.u_{n} \leqq a k t_{1}+d \text { et } v_{n} \leqq b k t_{1}+c k, n=2,3, \ldots, s .
From (16), taking into account the above inequalities, we deduce
{:[delta_(s+1) <= (akt_(1)+d)kt_(1)^(s)+(bkt_(1)+ck)kt_(1)^(s-1)=],[=kt_(1)^(s-1)(akt_(1)^(2)+(bk+d)t_(1)+ck)=kt_(1)^(s+1)]:}\begin{aligned}
& \delta_{s+1} \leqq\left(a k t_{1}+d\right) k t_{1}^{s}+\left(b k t_{1}+c k\right) k t_{1}^{s-1}= \\
& =k t_{1}^{s-1}\left(a k t_{1}^{2}+(b k+d) t_{1}+c k\right)=k t_{1}^{s+1}
\end{aligned}
that's to saydelta_(s+1) <= kt_(1)^(s+1)\delta_{s+1} \leqq k t_{1}^{s+1}, from which the properties (jj) and (jjj) result.
Now we can prove the following theorem:
THEOREM 3. If the applicationFF, the initial elementsx_(0),x_(1)in Xx_{0}, x_{1} \in Xand the real numberr > 0r>0enjoy the following properties:
(i) the application F is derivable in the Fréchet sense, up to order 2 inclusive, with respect toxxAndyyin each point of the setS=S=Int (S) where
bar(S)={x in X:||x-x_(0)|| <= r};\bar{S}=\left\{x \in X:\left\|x-x_{0}\right\| \leqq r\right\} ;
(ii) for each point(x,y)in S xx S(x, y) \in S \times S, the applicationF_(x)^(')(x,y)F_{x}^{\prime}(x, y)is invertible and the operator[F_(x)^(')(x,y)]^(-1)\left[F_{x}^{\prime}(x, y)\right]^{-1}is bounded onS,c^(')S, c^{\prime}that is to say||[F_(x)^(')(x,y)]^(-1)||≦≦alpha\left\|\left[F_{x}^{\prime}(x, y)\right]^{-1}\right\| \leqq \leqq \alpha, where a is a real and positive constant;
(iii) the application[F_(x)^(')(x,y)]^(-1)F_(y)^(')(x,y)\left[F_{x}^{\prime}(x, y)\right]^{-1} F_{y}^{\prime}(x, y)is uniformly bounded onS xx SS \times S, that's to say||[F_(x)^(')(x,y)]^(-1)F_(y)^(')(x,y)|| <= beta\left\|\left[F_{x}^{\prime}(x, y)\right]^{-1} F_{y}^{\prime}(x, y)\right\| \leqq \beta, Orbeta\betais a real and positive constant;
(iv) the following inequalities are verified
{:[s u p_((x,y)in S)||F_(x^(2))^('')(x,y)|| <= 2p;s u p_((x,y)in S)||F_(xy)^('')(x,y)|| <= q" et "],[s u p_((x,y)in S)||F_(y^(2))^('')(x,y)|| <= 2r","]:}\begin{gathered}
\sup _{(x, y) \in S}\left\|F_{x^{2}}^{\prime \prime}(x, y)\right\| \leqq 2 p ; \sup _{(x, y) \in S}\left\|F_{x y}^{\prime \prime}(x, y)\right\| \leqq q \text { et } \\
\sup _{(x, y) \in S}\left\|F_{y^{2}}^{\prime \prime}(x, y)\right\| \leqq 2 r,
\end{gathered}
wherep,qp, qAndrrare real and non-negative constants;
(v)
||x_(1)-x_(0)||^(') <= k,||x_(2)-x_(1)|| <= kt_(1)\left\|x_{1}-x_{0}\right\|^{\prime} \leqq k,\left\|x_{2}-x_{1}\right\| \leqq k t_{1}
Orkkis a real and positive constant, which does not depend onn,x_(2)n, x_{2}is given by (11) forn=1n=1Andt_(1)t_{1}is the positive root of the equation
(alpha pk-1)t^(2)+(beta+alpha qk)t+alpha rk=0(\alpha p k-1) t^{2}+(\beta+\alpha q k) t+\alpha r k=0
gamma >= k//(1-t_(1)),\gamma \geqq k /\left(1-t_{1}\right),
then equation (9) and procedure (11) enjoy the following properties:
(j) the sequence(x_(n))_(n=0)^(oo)\left(x_{n}\right)_{n=0}^{\infty}is convergent and ifbar(x)=lim_(n rarr oo)x_(n)\bar{x}=\lim _{n \rightarrow \infty} x_{n}, SObar(x)_(n)\bar{x}_{n}is a solution to equation (9);
(jj) the following inequalities hold:
||x_(n)-( bar(x))|| <= kt_(1)^(n)//(1-t_(1)),\left\|x_{n}-\bar{x}\right\| \leqq k t_{1}^{n} /\left(1-t_{1}\right),
for eachn=0,1,dotsn=0,1, \ldots.
Demonstration. By hypothesis we havex_(1)in Sx_{1} \in SAndx_(2)in Sx_{2} \in S. Suppose the following properties hold:
a)delta_(k)=||x_(k+1)-x_(k)|| <= kt_(1)^(k)\delta_{k}=\left\|x_{k+1}-x_{k}\right\| \leqq k t_{1}^{k}, Ork=0,1,dots,n-1k=0,1, \ldots, n-1
b)x_(k)in Sx_{k} \in S, Ork=0,1dots,nk=0,1 \ldots, n.
From the hypotheses of the theorem it follows that the propertiesaa) Andbb) take place fork=0k=0Andk=1k=1. Let us now show that these properties hold fork=nk=nrespectivelyk=n+1k=n+1
Now taking into account (ii) and (iii) we have:
(20)quad||x_(s+1)-x_(s)|| <= alpha||F(x_(s),x_(s-1))||+beta||x_(s)-x_(s-1)||;s=1,2,dots,n\quad\left\|x_{s+1}-x_{s}\right\| \leqq \alpha\left\|F\left(x_{s}, x_{s-1}\right)\right\|+\beta\left\|x_{s}-x_{s-1}\right\| ; s=1,2, \ldots, n. Eitherrho_(s)=||F(x_(s-1),x_(s))||\rho_{s}=\left\|F\left(x_{s-1}, x_{s}\right)\right\|Anddelta_(s)=||x_(s+1)-x_(s)||\delta_{s}=\left\|x_{s+1}-x_{s}\right\|Fors=0,1,dotss=0,1, \ldots
SOx_(n+1)in Sx_{n+1} \in S.
Let us now show that the sequence(x_(n))_(n=0)^(oo)\left(x_{n}\right)_{n=0}^{\infty}is convergent. Indeed, from (23) we deduce
{:[||x_(n+p)-x_(n)|| <= sum_(k=n)^(n+p-1)||x_(k+1)-x_(k)||=sum_(k=n)^(n+p-1)delta_(k) <= kt_(1)^(n)(1+t_(1)+dots+t_(1)^(n+p-1))],[ <= kt_(1)^(n)//(1-t_(1))]:}\begin{gathered}
\left\|x_{n+p}-x_{n}\right\| \leqq \sum_{k=n}^{n+p-1}\left\|x_{k+1}-x_{k}\right\|=\sum_{k=n}^{n+p-1} \delta_{k} \leqq k t_{1}^{n}\left(1+t_{1}+\ldots+t_{1}^{n+p-1}\right) \\
\leqq k t_{1}^{n} /\left(1-t_{1}\right)
\end{gathered}
for eachp=1,2,dots;n=1,2,dotsp=1,2, \ldots ; n=1,2, \ldots.
From the above inequality, taking into account thatt_(1) < 1t_{1}<1, it follows that the following(x_(n))_(n=0)^(oo)\left(x_{n}\right)_{n=0}^{\infty}is convergent.
If we pass to limit for gans the inequality (24) and we writebar(x)=limx_(n)\bar{x}=\lim x_{n}we have
BecauseFFis a derivable application in the sense of Fréchet it follows thatFFis continuous; then passing to limit in (11) forn rarr oon \rightarrow \infty, we have
that's to saybar(x)\bar{x}is a solution to equation (9).
BIBLIOGRAPHY
[1] Kantorovici, IV, Funktionaljnîi analiz i prikladnaia matematika, UMN 28, 89185, (1948).
[2] Păvalo1u, I., On iterative processes at a high order of convergence, Mathematica, (1970).
[3] Weinischke, JH, Über eine Klasse von Iterationsverfahren, Numerische Mathematik, 6, 395-404, (1964).