Abstract
Let X be a Banach space, Y a normed space, G:X\rightarrow Y a nonlinear operator, and G\left( x\right) =0 a nonlinear equation. We denote by F:X^{2}\rightarrow Y a nonlinear operator for which the restriction to the diagonal of X^{2} coincide with G. We first prove a Taylor type formula for operators with two variables. Next we consider the following two-step Newton type method: F\left( x_{n},x_{n-1}\right) +F_{x}^{\prime}\left( x_{n},x_{n-1}\right) \left( x_{n+1}-x_{n}\right) +F_{y}^{\prime}\left( x_{n},x_{n-1}\right) \left( x_{n}-x_{n-1}\right)=0.
Authors
Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)
Title
Original title (in French)
Une généralisation de methode de Newton
English translation of the title
A generalization of the Newton method
Keywords
Taylor polynomial with two variables; two-step Newton type method
Cite this paper as:
I. Păvăloiu, Une généralisation de methode de Newton, Mathematica, 20(43) (1978) no. 1, pp. 45-52 (in French).
About this paper
Journal
Mathematica
Publisher Name
DOI
Not available yet.
Print ISSN
Not available yet.
Online ISSN
Not available yet.
References
[1] Kantorovici, L.V., Functionalnîi analiz i prikladnaia matematika, UMN, 28, 89-185 (1948).
[2] Pavaloiu, I., Sur les procédés iteratif à un ordere élevé de convergence. Mathematica, 12, (35), 2 309-324 (1970).
[3] Weinisckhe, J. H., Über eine Klasse von Iterationsverfahren. Numeriche Mathematik , 6, 395-404, (1964).