-
Amat, S., Busquier, S.: A two step Steffenssen’s method under modified convergence conditions. J. Math. Anal. Appl. 324, 1084–1092 (2006) Article MathSciNet MATH Google Scholar
-
Beltyukov, B.A.: An analogue of the Aitken–Steffensen method with controlled step. URSS Comput. Math. Math. Phys. 27(3), 103–112 (1987) Article MathSciNet Google Scholar
-
Chun, C.: A geometric construction of iterative formulas of order three. Appl. Math. Lett. 23, 512–516 (2010) Article MathSciNet MATH Google Scholar
-
Cordero, A., Torregrosa, J.R.: Variants of Newton’s method for functions of several variables. Appl. Math. Comput. 183, 199–2008 (2006) Article MathSciNet MATH Google Scholar
-
Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) Article MathSciNet MATH Google Scholar
-
Cordero A., Torregrosa R.J.: A class of Steffenssen type method with optimal order of convergence. Appl. Math. Comput. 217, 7653–7659 (2011) Article MathSciNet MATH Google Scholar
-
Hongmin, R., Qingbio, W., Welhong, B.: A class of two-step Steffensen type methods with fourth order convergence. Appl. Math. Comput. 209(2), 206–210 (2009) Article MathSciNet MATH Google Scholar
-
Jain, P.: Steffensen type method for solving non-linear equations. Appl. Math. Comput. 194, 527–533 (2007) Article MathSciNet MATH Google Scholar
-
Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970) MATH Google Scholar
-
Ostrowski, M.A.: Solution of Equations in Euclidian and Banach Spaces. Academic Press, New York and London (1973) Google Scholar
-
Păvăloiu, I.: Approximation of the root of equations by Aitken–Steffensen-type monotonic sequences. Calcolo 32, 69–82 (1995) Article MathSciNet MATH Google Scholar
-
Păvăloiu, I., Cătinaş, E.: On a Steffensen–Hermite method of order three. Appl. Math. Comput. 215(7), 2663–2672 (2009) Article MathSciNet MATH Google Scholar
-
Păvăloiu, I., Cătinaş, E.: On a Steffensen type method. In: Ninth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Proceedings, pp. 369–375 (2007)
-
Păvăloiu, I.: Optimal algorithms, concerning the solving of equations by interpolation. In: Popoviciu, E. (ed.) Research on Theory of Allure, Approximation, Convexity and Optimization, Editura Srima, Cluj-Napoca, pp. 222–248 (1999)
-
Păvăloiu, I.: Aitken–Steffensen-type method for nondifferentiable functions (I). Rev. Anal. Numér. Theor. Approx. 31(1), 109–114 (2002) MATH Google Scholar
-
Păvăloiu, I.: Aitken–Steffensen-type method for nonsmooth functions (II). Rev. Anal. Numér. Théor. Approx. 31(2), 195–198 (2002) MATH Google Scholar
-
Păvăloiu, I.: Aitken–Steffensen-type method for nonsmooth functions (III). Rev. Anal. Numér. Théor. Approx. 32(1), 73–78 (2003) MATH Google Scholar
-
Quan, Z., Peng, Z., Li, Z., Wenchao, M.: Variants of Steffensen secant method and applications. Appl. Math. Comput. 216(12), 3486–3496 (2010) Article MathSciNet MATH Google Scholar
-
Sharma, R.J.: A composite thid order Newton–Steffensen method for solving nonlinear equations. Appl. Math. Comput. 169, 242–246 (2005) Article MathSciNet MATH Google Scholar
-
Traub, Y.F.: Iterative Method for Solution of Equations. Prentice-Hall, Englewood Cliffs, NJ (1964) Google Scholar
-
Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93 (2000) Article MathSciNet MATH Google Scholar