Balance equations for physical systems with corpuscular structure

Abstract

The usual method in nonequilibrium statistical mechanics allows the derivation of the balance equations only for the collision invariants (mass, momentum, energy) and only by a complete knowledge of the microscopic structure. In this paper the existence of the balance equation for an arbitrary physical quantity is proved for any corpuscular system satisfying the local equilibrium assumption, if the microscopic components obey the classical mechanics principles and can be generated or destroyed as a result of some instantaneous processes. We discuss the fundamental equations of the continuum mechanics for mass and momentum.

Authors

C. Vamos
Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy

A. Georgescu

N. Suciu
Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy

I. Turcu

Keywords

Nonequilibrium; balance equation; continuum mechanics

Cite this paper as

C. Vamoş, A. Georgescu, N. Suciu, I. Turcu (1996), Balance equations for physical systems with corpuscular structure, Physica A, 227, 81-92, doi: 10.1016/0378-4371(95)00373-8

References

see the expansion block below

PDF

soon

About this paper

Journal

Physica A

Publisher Name

Elsevier

Print ISSN

Not available yet.

Online ISSN

Not available yet.

Google Scholar Profile

google scholar link

[1] C. Truesdell and R.A. Toupin, The Classical Field Theories in Handbuch der Physik, Vol III, Part 1, ed. S. Flugge (Springer, Berlin, 1960)

[2] J. Muller, Thermodynamics (Pitman, London, 1985).

[3] C. Cercignani, Mathematical Methods in Kinetic Theory (Plenum, New York, 1990).

[4] R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, (Wiley, New York, 1975).

[5] A. Akhiezer and P. Peletminski, Les Methodes de la Physique Statistique (Mir, Moscow, 1980).

[6] S. Chapman and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases, (Cambridge Univ. Press, Cambridge, 1953).

[7] E.G.D. Cohen, Physica A 194 (1993) 229.

[8] A. Sveshnikov and A. Tikhonov, The Theory of Functions of a Complex Variable (Mir, Moscow, 1978).

[9] C. Vamos, A. Georgescu and N. Suciu, St. Cerc. Mat. (1995), in press.

[10] A. Kolmogorov and S. Fomine, Elements de la Theorie des Fonctions et de Fanalyse Fonctionelle (Mir, Moscow, 1974).

[11] P. Glansdorff and 1. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, London, 1971).

[12] A.I. Murdoch, Arch. Rational Mech. Anal. 88 (1985) 291.

[13] J.K. Irving and J.G. Kirkwood, J. Chem. Phys. 18 (1950) 817.

soon

1996

Related Posts