[1] R. Andricevic, 1998. Effects of local dispersion and sampling volume on the evolution of concentration fluctuations in aquifers. Water Resour. Res. 34 (5), 1115–1129.
CrossRef (DOI)
[2] Andricevic, R., Cvetkovic, V., 1996. Evaluation of risk from contaminants migrating by groundwater. Water Resour. Res. 32 (3), 611–621.
CrossRef (DOI)
[3] de Barros, F.P.J., Fiori, A., 2014. First-order based cumulative distribution function for solute concentration in heterogeneous aquifers: theoretical analysis and implications for human health risk assessment. Water Resour. Res. 50 (5), 4018–4037.
CrossRef (DOI)
[4] de Barros, F.P.J., Fiori, A., Bellin, A., 2011. A simple closed-form solution for assessing concentration uncertainty. Water Resour. Res. 47 (12), 1–5.
CrossRef (DOI)
[5] Bellin, A., Tonina, D., 2007. Probability density function of non-reactive solute concentration in heterogeneous porous formations. J. Contam. Hydrol. 94 (1–2), 109–125.
CrossRef (DOI)
[6] Burr, D.T., Sudicky, E.A., Naff, R.L., 1994. Nonreactive and reactive solute transport in three-dimensional heterogeneous porous media: mean displacement, plume spreading, and uncertainty. Water Resour. Res. 30 (3), 791–815.
CrossRef (DOI)
[7] Celis, C., Figueira da Silva, L.F., 2015. Lagrangian mixing models for turbulent combustion: review and prospects. Flow, Turbul. Combust. 94 (3), 643–689.
CrossRef (DOI)
[8] Cirpka, O.A., de Barros, F.P.J., Chiogna, G., Nowak, W., 2011. Probability density function of steady state concentration in two-dimensional heterogeneous porous media. Water Resour. Res. 47 (11), 1–14.
CrossRef (DOI)
[9] Cirpka, O.A., Schwede, R.L., Luo, J., Dentz, M., 2008. Concentration statistics for mixing-controlled reactive transport in random heterogeneous media. J. Contam. Hydrol. 98 (1–2), 61–74.
CrossRef (DOI)
[10] Colucci, P.J., Jaberi, F.A., Givi, P., Pope, S.B., 1998. Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10 (2), 499–515.
CrossRef (DOI)
[11] Dagan, G., 1982. Stochastic modeling of groundwater flow by unconditional and conditional probabilities 1.conditional simulation and the direct problem. Water Resour. Res. 18 (4), 813–833.
CrossRef (DOI)
[12] Dentz, M., Kinzelbach, H., Attinger, S., Kinzelbach, W., 2000. Temporal behavior of a solute cloud in a heterogeneous porous medium 1 .Point-like injection. Water Resour. Res. 36 (12), 3591–3604.
CrossRef (DOI)
[13] Dentz, M., Kinzelbach, H., Attinger, S., Kinzelbach, W., 2002. Temporal behavior of a solute cloud in a heterogeneous porous medium 3. Numerical simulations. Water Resour. Res. 38 (7), 23–1–23–13.
CrossRef (DOI)
[14] Dentz, M., Tartakovsky, D.M., 2010. Probability density functions for passive scalars dispersed in random velocity fields. Geophys. Res. Lett. 37 (24), 1–4.
CrossRef (DOI)
[15] Dodoulas, I.A., Navarro-Martinez, S., 2013. Large Eddy simulation of premixed turbulent flames using the probability density function approach. Flow, Turbul. Combust. 90 (3), 645–678.
CrossRef (DOI)
[16] Dopazo, C., O’Brien, E.E., 1974. An approach to autoignition of a turbulent mixture. Acta Astronaut. 1, 1239–1266.
CrossRef (DOI
[17] Drummond, I.T., Duane, S., Horgan, R.R., 1984. Scalar diffusion in simulated helical turbulence with molecular diffusivity. J. Fluid Mech. 138, 75–91.
CrossRef (DOI)
[18] Eberhard, J.P., Suciu, N., Vamos¸ , C., 2007. On the self-averaging of dispersion for transport in quasi-periodic random media. J. Phys. A 40 (4), 597.
CrossRef (DOI)
[19] Fiori, A., 2001. The Lagrangian concentration approach for determining dilution in aquifer transport: theoretical analysis and comparison with field experiments. Water Resour. Res. 37 (12), 3105–3114.
CrossRef (DOI)
[20] Fiori, A., Bellin, A., Cvetkovic, V., de Barros, F.P.J., Dagan, G., 2015. Stochastic modeling of solute transport in aquifers: from heterogeneity characterization to risk analysis. Water Resour. Res. 51 (8), 6622–6648.
CrossRef (DOI)
[21] Fiorotto, V., Caroni, E., 2002. Solute concentration statistics in heterogeneous aquifers for finite Peclet values. Transp. Porous Media 48 (3), 331–351.
CrossRef (DOI)
[22] Fox, R.O., 2003. Computational Models for Turbulent Reacting Flows. Cambridge Series in Chemical Engineering. Cambridge University Press, New York.
[23] Gelhar, L.W., Axness, C.L., 1983. Three dimensional stochastic analysis of Macrodispersion in aquifers. Water Resour. Res. 19 (1), 161–180.
CrossRef (DOI)
[24] Heße, F., Prykhod’ko, V., Schlüter, S., Attinger, S., 2014. Generating random fields with a truncated power-law variogram. A comparison of several numerical methods with respect to accurary and reproduction of structural features. Environ. Model. Softw. 55, 32–48.
CrossRef (DOI)
[25] Im, H.G., Lund, T.S., Ferziger, J.H., 1997. Large eddy simulation of turbulent front propagation with dynamic subgrid models. Phys. Fluids 9 (12), 3826–3833.
CrossRef (DOI)
[26] Jones, W., Marquis, A., Prasad, V., 2012. LES of a turbulent premixed swirl burner using the Eulerian stochastic field method. Combust. Flame 159 (10), 3079–3095.
CrossRef (DOI)
[27] Kapoor, V., Gelhar, L.W., 1994a. Transport in three-dimensionally heterogeneous aquifers: 1. Dynamics of concentration fluctuations. Water Resour. Res. 30 (6), 1775–1788.
CrossRef (DOI)
[28] Kapoor, V., Gelhar, L.W., 1994b. Transport in three-dimensionally heterogeneous aquifers 2. Predictions and observations of concentration fluctuations. Water Resour. Res. 30 (6), 1789–1801.
CrossRef (DOI)
[29] Kapoor, V., Kitanidis, P.K., 1997. Advection-diffusion in spatially random flows: Formulation of concentration covariance. Stoch. Hydrol. Hydraul. 11 (5), 397–422.
CrossRef (DOI)
[30] Kraichnan, R.H., 1970. Diffusion by a Random Velocity Field. Phys. Fluids 13 (1), 22
CrossRef (DOI)
[31] Meyer, D.W., Jenny, P., Tchelepi, H.A., 2010. A joint velocity-concentration PDF method for tracer flow in heterogeneous porous media. Water Resour. Res. 46 (12), 1–17.
CrossRef (DOI)
[32] Pierce, C.D., Moin, P., 1998. A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10 (12), 3041–3044.
CrossRef (DOI)
[33] Pope, S.B., 1985. PDF Methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11 (2), 119–192.
CrossRef (DOI)
[34] Popov, P.P., Pope, S.B., 2014. Implicit and explicit schemes for mass consistency preservation in hybrid particle/finite-volume algorithms for turbulent reactive flows. J. Comput. Phys. 257, 352–373.
CrossRef (DOI)
[35] Raman, V., Pitsch, H., 2007. A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31 (2), 1711–1719.
CrossRef (DOI)
[36] Sabel’nikov, V., Gorokhovski, M., Baricault, N., 2006. The extended IEM mixing model in the framework of the composition PDF approach: applications to diesel spray combustion. Combust. Theory Modell. 10 (1), 155–169.
CrossRef (DOI)
[37] Sanchez-Vila, X., Guadagnini, A., Fernàndez-Garcia, D., 2009. Conditional probability density functions of concentrations for mixing-controlled reactive transport in heterogeneous aquifers. Math. Geosci. 41 (3), 323–351.
CrossRef (DOI)
[38] Srzic, V., Andricevic, R., Gotovac, H., Cvetkovic, V., 2013a. Collapse of higher-order solute concentration moments in groundwater transport. Water Resour. Res. 49 (8), 4751–4764.
CrossRef (DOI)
[39] Srzic, V., Cvetkovic, V., Andricevic, R., Gotovac, H., 2013b. Impact of aquifer heterogeneity structure and local-scale dispersion on solute concentration uncertainty: impact of aquifer heterogeneity on concentration uncertainty. Water Resour. Res. 49 (6), 3712–3728.
CrossRef (DOI)
[40] Suciu, N., 2014. Diffusion in random velocity fields with applications to contaminant transport in groundwater. Adv. Water Resour. 69, 114–133.
CrossRef (DOI)
[41] Suciu, N., Radu, F.A., Attinger, S., Schüler, L., Knabner, P., 2015a. A Fokker-Planck approach for probability distributions of species concentrations transported in heterogeneous media. J. Comput. Appl. Math. 289, 241–252.
CrossRef (DOI)
[42] Suciu, N., Radu, F.A., Prechtel, A., Brunner, F., Knabner, P., 2013. A coupled finite element–global random walk approach to advection-dominated transport in porous media with random hydraulic conductivity. J. Comput. Appl. Math. 246, 27–37.
CrossRef (DOI)
[43] Suciu, N., Schüler, L., Attinger, S., Knabner, P., 2016. Towards a filtered density function approach for reactive transport in groundwater. Adv. Water Resour. 90, 83–98.
CrossRef (DOI)
[44] Suciu, N., Schüler, L., Attinger, S., Vamos, C., Knabner, P., 2015b. Consistency issues in PDF methods. An. St. Univ. Ovidius Constanta, Ser. Mat. 23 (3), 187–208.
CrossRef (DOI)
[45] Suciu, N., Vamos¸ , C., Vanderborght, J., Hardelauf, H., Vereecken, H., 2006. Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour. Res. 42 (4), 1–17.
CrossRef (DOI)
[46] Tartakovsky, D.M., Dentz, M., Lichtner, P.C., 2009. Probability density functions for advective-reactive transport with uncertain reaction rates. Water Resour. Res. 45 (7), 1–8.
CrossRef (DOI)
[47] Tennekes, H., Lumley, J.L., 1972. A First Course in Turbulence. MIT Press, Cambridge, Mass.
[48] Vamos¸ , C., Suciu, N., Vereecken, H., 2003. Generalized random walk algorithm for the numerical modeling of complex diffusion processes. J. Comput. Phys. 186 (2), 527–544.
CrossRef (DOI)
[49] Venturi, D., Tartakovsky, D., Tartakovsky, A., Karniadakis, G., 2013. Exact PDF equations and closure approximations for advective-reactive transport. J. Comput. Phys. 243, 323–343.
CrossRef (DOI)
[50] Villermaux, J., Devillon, J.C., 1972. Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modèle d’interaction phénoménologique. In: Proceedings of the 2nd International Symposium on Chemical Reaction Engineering. Elsevier, New York, pp. 1–13. WWAP, 2012. The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk, no. Vol. 1 in World Water Assessment Programme. Unesco, Paris.
[51] Yee, E., Chan, R., 1997. Comments on ”Relationships between higher moments of concentration and of dose in turbulent dispersion”. Bound-Lay Meteorol 82 (2), 341–351.
CrossRef (DOI)