Abstract
A study of the orbital period variation of the W UMa system CK Bootis is made using an extended observational time base. The biperiodicity of the orbital period modulation is emphasized. Both detected periodicities (24.14 yr and 10.62 yr) cannot be explained through the light-time effect unless the companion would be a white dwarf as suggested by other authors, too.
Moreover, we also argue that, nowadays at least, it seems that there is no causal relation between the orbital period variation and the recently discovered visual companion.
Consequently, we infer that at least one of the two periodicities may be related to the magnetic activity cycles in the component stars of CK Boo, while the other periodicity could be related to the presence of a fourth companion in the system
Authors
C. Vamoș
-Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy
A. Pop
Keywords
Stars; binaries; eclipsing Stars; binaries; close Stars; individual; CK Boo Methods; data analysis
Cite this paper as:
A. Pop, C. Vamoş, Biperiodic orbital period modulation of the W UMa binary system CK Bootis, New Astronomy, 17 (2012), 667-672, doi: 10.1016/j.newast.2012.04.003
References
see the expansion block below.
Not available yet.
About this paper
Journal
Publisher Name
Elsevier
Print ISSN
1384-1076
Online ISSN
MR
?
ZBL
?
[1] Abhyankar, K.D., Panchatsaram, T., 1984. Light time effect in TW Draconis. MNRAS 211, 75.
[2] Applegate, J.H., 1992. A mechanism for orbital period modulation in close binaries. ApJ 385, 621.
[3] Aslan, Z., Derman, E., 1986. Photoelectric observations of CK bootis. A&AS 66, 281.
[4] Barning, F.J.M., 1963. The numerical analysis of the light-curve of 12 Lacertae. BAN 17, 22.
[5] Borkovits, T., Hegedüs, T., 1996. On the invisible components of some eclipsing binaries. A&AS 12, 63.
[6] Borkovits, T., Csizmadia, Sz., Hegedüs, T., Bíró, I.B., Sándor, Zs., Opitz, A., 2002. Complex period variations in the binary system IM Aurigae. A&A 392, 895.
[7] Borkovits, T., Elkhateeb, M.M., Csizmadia, Sz., Nuspl, J., Biró, I.B., Hegedüs, T., Csorvási, R., 2005. Indirect evidence for short period magnetic cycles in W UMa stars. Period analysis of five overcontact systems. A&A 441, 1087.
[8] Breger, M., Huang, L., Jiang, S.-Y., Guo, Z.-H., Antonello, E., Mantegazza, L., 1987. Multiple close frequencies of the Delta Scuti star h2 Tau. A&A, 175, 117.
[9] D’Angelo, C., van Kerkwijk, M.H., Rucinski, S.M., 2006. Contact binaries with additional components. II. A spectroscopic search for faint tertiaries. AJ 132, 650.
[10] Demircan, O., 1987. BV observations of W UMa-type binaries: CK Bootis, BI CVn, and AH Vir. Ap&SS 135, 169.
[11] Demircan, O., Selam, S.O., 1993. Long-term behaviour of the orbital period of Algoltype binary ST Persei. A&AS 98, 513.
[12] Derman, E., Demircan, O., 1992. A period study of GK Cephei. AJ 103, 599.
[13] Diethelm, R., 2011.Timings of minima of eclipsing binaries. IBVS, 5992.
[14] Gazeas, K.D., Niarchos, P.G., Zola, S., Kreiner, J.M., Rucinski, S.M., 2006. Physical parameters of components in close binary systems: VI. AcA 56, 127.
[15] Hall, D.S., 1989. The relation between RS CVn and Algol. SSR 50, 219.
[16] Hall, D.S., 1990. Period changes and magnetic cycles. In: Ibanoglu, C. (Ed.), Active Close Binaries. Kluwer Academic Publishers, Dordrecht, p. 95.
[17] Huang, S.-S., 1963. Modes of mass ejection by binary stars and effect on their orbital periods. ApJ 138, 471.
[18] Jia, G., Liu, X., Huang, H., 1992. 1991 Photometry of the W UMa type binary CK Boo. IBVS, 3727.
[19] Kalci, R., Derman, E., 2005. CK Bootis: a W UMa system with a small mass ratio. AN 326, 342.
[20] Kalimeris, A., Rovithis-Livaniou, H., Rovithis, P., 1994a. On the orbital changes in contact binaries. A&A 282, 775.
[21] Kalimeris, A., Rovithis-Livaniou, H., Rovithis, P., Oprescu, G., Dumitrescu, A., Suran, M.D., 1994b. An orbital period study of the contact system AB Andromedae. A&A 291, 765.
[22] Kopal, Z., 1978. Dynamics of Close Binary Systems. D. Reidel Publishing Company, Dordrecht. Kreiner, J.M., 1971. Investigation of changes in periods of eclipsing variables. AcA 21, 365.
[23] Krzesin´ ski, J., Mikolajewski, M., Pajdosz, G., Zola, S., 1991. An observational study of a spotted W UMa-type binary star CK Bootis. Ap&SS 184, 37.
[24] Lanza, A.F., Rodonò, M., 1999. Orbital period modulation and quadrupole moment changes in magnetically active close binaries. A&A 349, 887.
[25] Lanza, A.F., Rodonò, M., Rosner, R., 1998. Orbital period modulation and magnetic cycles in close binaries. MNRAS 296, 893.
[26] Li, Y., Qian, S.B., 2005. GMG 2.4-m telescope and light-time effect research for W UMa-type binaries. In: Sterken, C. (Ed.), ASP Conference Series, vol. 335, p. 245.
[27] Liao, W.-P., Qian, S.-B., 2010. The most plausible explanation of the orbital period changes in close binaries: the case of the RS CVn-type binary WW Dra. MNRAS 405, 1930.
[28] López de Coca, P., Garrido, R., Rolland, A., 1984. Mode identification for the Delta Scuti variable HR 7222. A&AS 58, 441.
[29] Panchatsaram, T., 1981. Light-time effect in RT Persei. Ap&SS 77, 179.
[30] Panchatsaram, T., Abhyankar, K.D., 1981. SW Lacertae – a quadruple system. Bull. Astron. Soc. India 9, 31.
[31] Pop, A., 1996. The use of characteristic time to the study of period variability phenomena. Romanian Astron. J. 6, 147.
[32] Pop, A., 1999. A multiperiodic ephemeris for RZ Cephei. In: IBVS, vol. 4801.
[33] Pop, A., 2005. On the orbital period modulation of the eclipsing binary system Y Leonis. In: Sterken, C. (Ed.), ASP Conference Series, vol. 335, p. 263.
[34] Pop, A., 2007. On the detection and diagnosis of low-level stellar variability. Romanian Astron. J. 17, 35.
[35] Pop, A., Roman, R., 2005. RT and: multiperiodic orbital period variability, resonance, and the hypothesis of the light-time effect. Romanian Astron. J. 15, 163, Supplement.
[36] Pop, A., Vamos, C., 2007. The detection and diagnosis of low-level stellar variability through resampling methods. Romanian Astron. J. 17, 101.
[37] Pop, A., Todoran, I., Agerer, F., 1996. Multiperiodic behaviour of RT Persei. Romanian Astron. J. 6, 141.
[38] Pop, A., Liteanu, V., Pavel, C., 2000. On the multiperiodicity of the orbital period variation of ST Persei. Romanian Astron. J. 10, 25.
[39] Pop, A., Liteanu, V., Moldovan, D., 2003. On the period variability of GP Andromedae. Ap&SS 284, 1207.
[40] Pop, A., Vamos, C., Turcu, V., 2010. Deterministic components in the light curve amplitude of Y Oph. AJ 139, 425.
[41] Pop, A., Turcu, V., Marcu, A., 2011. The intriguing orbital period variability of Y Leonis. Ap&SS 333, 17.
[42] Pribulla, T., Rucinski, S.M., 2006. Contact binaries with additional components. I. The extant data. AJ 131, 2986.
[43] Pringle, J.E., 1975. Period changes in eruptive binaries. MNRAS 170, 633.
[44] Qian, S., 2001. Possible mass and angular momentum loss in Algol-type binaries. V RT Persei and TX Ursae Majoris. AJ 122, 2686.
[45] Qian, S., Liu, Q., 2000. A possible connection between the variability of light curve and the change of the orbital period in the contact binary CK Bootis. Ap&SS 271, 331.
[46] Rafert, J.B., 1982. Periodic ephemerides for 49 eclipsing binary-star systems. PASP 94, 485.
[47] Rucinski, S., Lu, W., 1999. Radial velocity studies of close binary stars. II. AJ 118, 2451.
[48] Rucinski, S.M., Pribulla, T., van Kerkwijk, M.H., 2007. Contact binaries with additional components. III. A search using adaptive optics. AJ 134, 2353.
[49] Samolyk, G., 2011. Recent minima of 146 eclipsing binary stars. J. Amer. Assoc. Var. Star Obs. 39, 177.
[50] Sârbu, C., 1997. A new median – based robust regression method. Croat. Chem. Acta 70, 795.
[51] Szebehely, V., Zare, K., 1977. Stability of classical triplets and their hierarchy. A&A 58, 145.
[52] Wehlau, W., Leung, K.-C., 1964. The multiple periodicity of Delta Delphini. ApJ 139, 843.
[53] Wood, D.B., Forbes, J.E., 1963. Ephemerides of eclipsing stars. AJ 68, 257.
[54] Yüce, K., Selam, S.O., Albayrak, B., Ak, T., 2006. . Ap&SS 304, 67.
soon