[1] F. Altomare and M. Campiti, Korovkin-type approximaton theory and its applications, Walter de Gruyter, Berlin-New York, 1994. DOI: https://doi.org/10.1515/9783110884586
[2] G. Başcanbaz-Tunca, A. Erençin and F. Taşdelen, Some properties of Bernstein type Cheney and Sharma operators, General Mathematics, 24 (2016) no. 1-2, pp. 17–25.
[3] T. Bostanci and G. Başcanbaz-Tunca, A Stancu type extension of Cheney and Sharma operator, J. Numer. Anal. Approx. Theory, 47 (2018) no. 2, pp. 124–134. https://doi.org/10.33993/jnaat472-1133 DOI: https://doi.org/10.33993/jnaat472-1133
[4] T. Cătinaş, Extension of some Cheney-Sharma type operators to a triangle with one curved side, Miskolc Math. Notes 21 (2020), pp. 101–111. https://dx.doi.org/10.18514/MMN.2020.2686 DOI: https://doi.org/10.18514/MMN.2020.2686
[5] T. Cătinaş, Cheney-Sharma type operators on a triangle with straight sides, Symmetry 14 (2022), no. 11, 2446. https://doi.org/10.3390/sym14112446 DOI: https://doi.org/10.3390/sym14112446
[6] T. Cătinaş and I. Buda, An extension of the Cheney-Sharma operator of the first kind, J. Numer. Anal. Approx. Theory, 52 (2023) no. 2, pp. 172–181. https://doi.org/10.33993/jnaat522-1373 DOI: https://doi.org/10.33993/jnaat522-1373
[7] T. Cătinaş and D. Otrocol, Iterates of multivariate Cheney-Sharma operators J. Comput. Anal. Appl. 15 (2013), No. 7, pp. 1240–1246.
[8] T. Cătinaş and D. Otrocol, Iterates of Cheney-Sharma type operators on a triangle with curved side J. Comput. Anal. Appl. 28 (2020), No. 4, pp. 737–744.
[9] E.W. Cheney and A. Sharma, On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 2 (1964), pp. 77–84.
[10] I. Chlodovsky, Sur le development des fonctions défines dans un interval infinien series de polynomes de S.N. Bernstein, Compositio Math., 4 (1937), pp. 380–392.
[11] A.D. Gadjiev, The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of P.P. Korovkin, Dokl. Akad. Nauk SSSR, 218 (1974) no. 5, pp. 1001–1004.
[12] A.D. Gadjiev, Theorems of the type of P. P. Korovkin’s theorems (in Russian), Math. Z. 205 (1976), pp. 781–786. Translated in Maths Notes 20 (1977) no. 5-6, pp. 995–998. DOI: https://doi.org/10.1007/BF01146928
[13] H. Karsli, Recent results on Chlodovsky operators, Stud. Univ. Babeş-Bolyai Math. 56 (2011) no. 2, pp. 423–436.
[14] D. Söylemez and F. Taşdelen, On Cheney-Sharma Chlodovsky operators, Bull. Math. Anal. Appl. 11 (2019) no. 1, pp. 36–43.
[15] D. Söylemez and F. Taşdelen, Approximation by Cheney-Sharma Chlodovsky operators, Hacet. J. Math. Stat. 49 (2020) no. 2, pp. 510–522. https://doi.org/10.15672/hujms.458188 DOI: https://doi.org/10.15672/hujms.458188
[16] D. Stancu, Quadrature formulas constructed by using certain linear positive operators, Numerical Integration (Proc. Conf., Oberwolfach, 1981), ISNM 57 (1982), pp. 241–251. https://doi.org/10.1007/978-3-0348-6308-7_23 DOI: https://doi.org/10.1007/978-3-0348-6308-7_23
[17] D. Stancu and C. Cismaşiu, On an approximating linear positive operator of Cheney Sharma, Rev. Anal. Numer. Theor. Approx., 26 (1997), pp. 221–227. https://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art30